Asymptotic behaviour of instantons on cylinder manifolds

  • Teng HuangEmail author


In this article, we study the instanton equation on the cylinder over a closed manifold X which admits non-zero smooth 3-form P and 4-form Q. Our results are (1) if X is a good manifold, i.e., PQ satisfying \(d*_{X}P=d*_{X}Q=0\), then the instanton with integrable curvature decays exponentially at the ends, and, (2) if X is a real Killing spinor manifold, i.e., PQ satisfying \(dP=4Q\) and \(d*_{X}Q=(n-3)*_{X}P\), we prove that the solution of instanton equation is trivial under some mild conditions.

Mathematics Subject Classification

58E15 81T13 



I would like to thank the anonymous referee for a careful reading of my manuscript and helpful comments. This work is supported by Nature Science Foundation of China No. 11801539 and Postdoctoral Science Foundation of China Nos. 2017M621998, 2018T110616.


  1. 1.
    Bauer, I., Ivanova, T.A., Lechtenfeld, O., Lubbe, F.: Yang–Mills instantons and dyons on homogeneous \(G_{2}\)-manifolds. JHEP 2010(10), 1–27 (2010)CrossRefzbMATHGoogle Scholar
  2. 2.
    Carrión, R.R.: A generalization of the notion of instanton. Diff. Geom. Appl. 8(1), 1–20 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Corrigan, E., Devchand, C., Fairlie, D.B., Nuyts, J.: First order equations for gauge fields in spaces of dimension great than four. Nucl. Phys. B 214(3), 452–464 (1983)CrossRefGoogle Scholar
  4. 4.
    Donaldson, S.K.: Floer Homology Groups in Yang–Mills Theory. Cambridge University Press, Cambridge (2002)CrossRefzbMATHGoogle Scholar
  5. 5.
    Donaldson, S.K., Kronheimer, P.B.: The Geometry of Four-Manifolds. Oxford University Press, Oxford (1990)zbMATHGoogle Scholar
  6. 6.
    Donaldson, S.K., Segal. E.: Gauge theory in higher dimensions, II. (2009). arXiv:0902.3239
  7. 7.
    Donaldson, S.K., Thomas, R.P.: Gauge Theory in Higher Dimensions, pp. 31–47. The Geometric Universe, Oxford (1998)zbMATHGoogle Scholar
  8. 8.
    Graña, M.: Flux compactifications in string theory: a comprehensive review. Phys. Rep. 423(3), 91–158 (2006)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Green, M.B., Schwarz, J.H., Witten, E.: Supperstring Theory. Cambridge University Press, Cambridge (1987)Google Scholar
  10. 10.
    Harland, D., Ivanova, T.A., Lechtenfeld, O., Popov, A.D.: Yang–Mills flows on nearly Kähler manifolds and \(G_{2}\)-instantons. Commun. Math. Phys. 300(1), 185–204 (2010)CrossRefzbMATHGoogle Scholar
  11. 11.
    The Geometric Universe, D., Nölle, C.: Instantons and Killing spinors. JHEP 3, 1–38 (2012)Google Scholar
  12. 12.
    Haupt, A.S.: Yang–Mills solutions and \(Spin(7)\)-instantons on cylinders over coset spaces with \(G_{2}\)-structure. JHEP 3, 1–53 (2016)Google Scholar
  13. 13.
    Huang, T.: Instanton on cylindrical manifolds. Ann. Henri Poincaré 18(2), 623–641 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Huang, T.: Stable Yang–Mills connections on special holonomy manifolds. J. Geom. Phys. 116, 271–280 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Huang, T.: An energy gap for complex Yang–Mills equations. SIGMA Symmetry Integr. Geom. Methods Appl. 13, 15 (2017)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Ivanova, T.A., Popov, A.D.: Instantons on special holonomy manifolds. Phys. Rev. D 85(10), 105012 (2012)CrossRefGoogle Scholar
  17. 17.
    Ivanova, T.A., Lechtenfeld, O., Popov, A.D., Rahn, T.: Instantons and Yang–Mills flows on coset spaces. Lett. Math. Phys. 89(3), 231–247 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Price, P.: A monotonicity formula for Yang–Mills fields. Manuscr. Math. 43, 131–166 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Sá Earp, H.N.: Generalised Chern–Simons theory and \(G_{2}\)-instantons over associative fibrations. SIGMA 10, 083 (2014)zbMATHGoogle Scholar
  20. 20.
    Sá Earp, H.N.: \(G_{2}\)-instantons over asymptotically cylindrical manifolds. Geom. Topol. 19, 61–111 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Sá Earp, H.N., Walpuski, T.: \(G_{2}\)-instantons over twisted connected sums. Geom. Topol. 19, 1263–1285 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Taubes, C.H.: Casson’s invariant and gauge theory. J. Diff. Geom. 31(2), 547–599 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Tian, G.: Gauge theory and calibrated geometry. I. Ann. Math. 151(1), 193–268 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Uhlenbeck, K.K.: Connctions with \(L^{p}\) bounds on curvature. Commun. Math. Phys. 83, 31–42 (1982)CrossRefGoogle Scholar
  25. 25.
    Uhlenbeck, K.K.: The Chern classes of Sobolev connections. Commun. Math. Phys. 101, 445–457 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Walpuski, T.: \(G_{2}\)-instantons on generalised Kummer constructions. Geom. Topol. 17, 2345–2388 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Ward, R.S.: Completely solvable gauge field equations in dimension great than four. Nucl. Phys. B 236(2), 381–396 (1984)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.School of Mathematical SciencesUniversity of Science and Technology of ChinaHefeiPeople’s Republic of China
  2. 2. School of ScienceNantong UniversityNantongPeople’s Republic of China

Personalised recommendations