Skip to main content
Log in

On the classification of MOTS in the de Sitter space

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

In this paper, we deal with marginally outer trapped surfaces (MOTS) immersed in the de Sitter space \(\mathbb {S}_1^{n+2}\). In this setting we are able to obtain a Simons formula for the null second fundamental form and under some appropriate constraints on the MOTS, we apply a weak maximum principle in order to guarantee that it must be either a totally geodesic submanifold or isometric to an open piece of an isoparametric submanifold with two distinct principal curvatures one of which is simple. In this last case, supposing that the initial data where the MOTS lying is a totally umbilical spacelike hypersurface of \(\mathbb {S}_1^{n+2}\), we conclude that it must be either isometric to a circular cylinder, a hyperbolic cylinder or a Clifford torus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alencar, H., do Carmo, M.: Hypersurfaces with constant mean curvature in spheres. Proc. Am. Math. Soc. 120, 1223–1229 (1994)

    Article  MathSciNet  Google Scholar 

  2. Alías, L.J., Mastrolia, P., Rigoli, M.: Maximum Principles and Geometric Applications, Springer Monographs in Mathematics. Springer, Cham (2016)

    Book  Google Scholar 

  3. Alías, L.J., García-Martínez, S.C.: On the scalar curvature of constant mean curvature hypersurfaces in space forms. J. Math. Anal. Appl. 363(2), 579–587 (2010)

    Article  MathSciNet  Google Scholar 

  4. Andersson, L., Eichmair, M., Metzger, J.: Jang’s equation and its applications to marginally trapped surfaces. In: Complex Analysis and Dynamical Systems IV: Part 2. General Relativity, Geometry, and PDE, Contemporary Mathematics, vol. 554, (AMS and Bar-Ilan) (2011)

  5. Andersson, L., Mars, M., Simon, W.: Local existence of dynamical and trapping horizons. Phys. Rev. Lett. 95, 111102 (2005)

    Article  Google Scholar 

  6. Ashtekar, A., Krishnan, B.: Dynamical horizons and their properties. Phys. Rev. D (3) 68(10), 104030 (2003). 25

    Article  MathSciNet  Google Scholar 

  7. Chruściel, P.T., Galloway, G.J., Solis, D.: Topological censorship for Kaluza–Klein space-times. Ann. Henri Poincaré 10(5), 893–912 (2009)

    Article  MathSciNet  Google Scholar 

  8. Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics, vol. 1. Cambridge University Press, London (1973)

    Book  Google Scholar 

  9. Hawking, S.W., Penrose, R.: The singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. A 314, 529–548 (1970)

    Article  MathSciNet  Google Scholar 

  10. Huber, A.: On subharmonic functions and differential geometry in the large. Comment. Math. Helv. 32, 13–72 (1957)

    Article  MathSciNet  Google Scholar 

  11. Lawson, H.B.: Local rigidity theorems for minimal hypersurfaces. Ann. Math. 89, 187–197 (1969)

    Article  MathSciNet  Google Scholar 

  12. Montiel, S.: An integral inequality for compact spacelike hypersurfaces in de Sitter space and applications to the case of constant mean curvature. Indiana Univ. Math. J. 37, 909–917 (1988)

    Article  MathSciNet  Google Scholar 

  13. Nomizu, K., Smith, B.: A formula of Simons’ type and hypersurfaces with constant mean curvature. J. Diff. Geom. 3, 367–377 (1969)

    Article  MathSciNet  Google Scholar 

  14. Okumura, M.: Hypersurfaces and a pinching problem on the second fundamental tensor. Am. J. Math. 96, 207–213 (1974)

    Article  MathSciNet  Google Scholar 

  15. Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965)

    Article  MathSciNet  Google Scholar 

  16. Pigola, S., Rigoli, M., Setti, A.G.: A remark on the maximum principle and stochastic completeness. Proc. Am. Math. Soc. 131, 1283–1288 (2003)

    Article  MathSciNet  Google Scholar 

  17. Schoen, R., Yau, S.T.: Proof of the positive mass theorem. II. Commun. Math. Phys. 79(2), 231–260 (1981)

    Article  MathSciNet  Google Scholar 

  18. Simons, J.: Minimal varieties in Riemannian manifolds. Ann. Math. 88, 62–105 (1968)

    Article  MathSciNet  Google Scholar 

  19. Xu, H.W.: A rigidity theorem for submanifolds with parallel mean curvature in a sphere. Arch. Math. (Basel) 61, 489–496 (1993)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

The authors would like to thank the referee for his/her comments and suggestions which enabled them to improve this work. The first author is partially supported by CNPq, Brazil, Grant 456755/2014-4 and FAPEAL. The second author is partially supported by CNPq, Brazil, Grant 303977/2015-9. The third author is partially supported by CNPq, Brazil, Grant 431976/2018-0.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Henrique F. de Lima.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Batista, M., de Lima, H.F. & Santos, F.R.d. On the classification of MOTS in the de Sitter space. manuscripta math. 162, 159–169 (2020). https://doi.org/10.1007/s00229-019-01123-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-019-01123-y

Mathematics Subject Classification

Navigation