On the classification of MOTS in the de Sitter space

  • Márcio Batista
  • Henrique F. de LimaEmail author
  • Fábio R. dos Santos


In this paper, we deal with marginally outer trapped surfaces (MOTS) immersed in the de Sitter space \(\mathbb {S}_1^{n+2}\). In this setting we are able to obtain a Simons formula for the null second fundamental form and under some appropriate constraints on the MOTS, we apply a weak maximum principle in order to guarantee that it must be either a totally geodesic submanifold or isometric to an open piece of an isoparametric submanifold with two distinct principal curvatures one of which is simple. In this last case, supposing that the initial data where the MOTS lying is a totally umbilical spacelike hypersurface of \(\mathbb {S}_1^{n+2}\), we conclude that it must be either isometric to a circular cylinder, a hyperbolic cylinder or a Clifford torus.

Mathematics Subject Classification

Primary 53C42 53C50 Secondary 53A10 53C20 



The authors would like to thank the referee for his/her comments and suggestions which enabled them to improve this work. The first author is partially supported by CNPq, Brazil, Grant 456755/2014-4 and FAPEAL. The second author is partially supported by CNPq, Brazil, Grant 303977/2015-9. The third author is partially supported by CNPq, Brazil, Grant 431976/2018-0.


  1. 1.
    Alencar, H., do Carmo, M.: Hypersurfaces with constant mean curvature in spheres. Proc. Am. Math. Soc. 120, 1223–1229 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Alías, L.J., Mastrolia, P., Rigoli, M.: Maximum Principles and Geometric Applications, Springer Monographs in Mathematics. Springer, Cham (2016)CrossRefzbMATHGoogle Scholar
  3. 3.
    Alías, L.J., García-Martínez, S.C.: On the scalar curvature of constant mean curvature hypersurfaces in space forms. J. Math. Anal. Appl. 363(2), 579–587 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Andersson, L., Eichmair, M., Metzger, J.: Jang’s equation and its applications to marginally trapped surfaces. In: Complex Analysis and Dynamical Systems IV: Part 2. General Relativity, Geometry, and PDE, Contemporary Mathematics, vol. 554, (AMS and Bar-Ilan) (2011)Google Scholar
  5. 5.
    Andersson, L., Mars, M., Simon, W.: Local existence of dynamical and trapping horizons. Phys. Rev. Lett. 95, 111102 (2005)CrossRefGoogle Scholar
  6. 6.
    Ashtekar, A., Krishnan, B.: Dynamical horizons and their properties. Phys. Rev. D (3) 68(10), 104030 (2003). 25MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chruściel, P.T., Galloway, G.J., Solis, D.: Topological censorship for Kaluza–Klein space-times. Ann. Henri Poincaré 10(5), 893–912 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hawking, S.W., Ellis, G.F.R.: The Large Scale Structure of Space-Time. Cambridge Monographs on Mathematical Physics, vol. 1. Cambridge University Press, London (1973)CrossRefGoogle Scholar
  9. 9.
    Hawking, S.W., Penrose, R.: The singularities of gravitational collapse and cosmology. Proc. R. Soc. Lond. A 314, 529–548 (1970)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Huber, A.: On subharmonic functions and differential geometry in the large. Comment. Math. Helv. 32, 13–72 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Lawson, H.B.: Local rigidity theorems for minimal hypersurfaces. Ann. Math. 89, 187–197 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Montiel, S.: An integral inequality for compact spacelike hypersurfaces in de Sitter space and applications to the case of constant mean curvature. Indiana Univ. Math. J. 37, 909–917 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Nomizu, K., Smith, B.: A formula of Simons’ type and hypersurfaces with constant mean curvature. J. Diff. Geom. 3, 367–377 (1969)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Okumura, M.: Hypersurfaces and a pinching problem on the second fundamental tensor. Am. J. Math. 96, 207–213 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Penrose, R.: Gravitational collapse and space-time singularities. Phys. Rev. Lett. 14, 57–59 (1965)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Pigola, S., Rigoli, M., Setti, A.G.: A remark on the maximum principle and stochastic completeness. Proc. Am. Math. Soc. 131, 1283–1288 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Schoen, R., Yau, S.T.: Proof of the positive mass theorem. II. Commun. Math. Phys. 79(2), 231–260 (1981)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Simons, J.: Minimal varieties in Riemannian manifolds. Ann. Math. 88, 62–105 (1968)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Xu, H.W.: A rigidity theorem for submanifolds with parallel mean curvature in a sphere. Arch. Math. (Basel) 61, 489–496 (1993)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.CPMAT-IMUniversidade Federal de AlagoasMaceióBrazil
  2. 2.Departamento de MatemáticaUniversidade Federal de Campina GrandeCampina GrandeBrazil

Personalised recommendations