manuscripta mathematica

, Volume 159, Issue 3–4, pp 453–473 | Cite as

Evolution of the Steklov eigenvalue under geodesic curvature flow

  • Pak Tung HoEmail author
  • Hyunmo Koo


On a two-dimensional compact Riemannian manifold with boundary, we prove that the first nonzero Steklov eigenvalue is nondecreasing along the unnormalized geodesic curvature flow if the initial metric has positive geodesic curvature and vanishing Gaussian curvature. Using the normalized geodesic curvature flow, we also obtain some estimate for the first nonzero Steklov eigenvalue. On the other hand, we prove that the compact soliton of the geodesic curvature flow must be the trivial one.

Mathematics Subject Classification

53C44 58C40 58J50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



  1. 1.
    AIM Problem Lists: Geometric flows and Riemannian geometry (2015).
  2. 2.
    Brendle, S.: A family of curvature flows on surfaces with boundary. Math. Z. 241, 829–869 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Brendle, S.: Curvature flows on surfaces with boundary. Math. Ann. 324, 491–519 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cao, X.: Eigenvalues of \((-\Delta +\frac{R}{2})\) on manifolds with nonnegative curvature operator. Math. Ann. 377, 435–441 (2007)MathSciNetGoogle Scholar
  5. 5.
    Cao, X.: First eigenvalues of geometric operators under the Ricci flow. Proc. Am. Math. Soc. 136, 4075–4078 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cao, X., Hou, S., Ling, J.: Estimate and monotonicity of the first eigenvalue under the Ricci flow. Math. Ann. 354, 451–463 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Colbois, B., El Soufi, A., Girouard, A.: Isoperimetric control of the Steklov spectrum. J. Funct. Anal. 261, 1384–1399 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Fraser, A., Schoen, R.: The first Steklov eigenvalue, conformal geometry, and minimal surfaces. Adv. Math. 226, 4011–4030 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Girouard, A., Polterovich, I.: Upper bounds for Steklov eigenvalues on surfaces. Electron. Res. Announc. Math. Sci. 19, 77–85 (2012)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Hassannezhad, A.: Conformal upper bounds for the eigenvalues of the Laplacian and Steklov problem. J. Funct. Anal. 261, 3419–3436 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Ho, P.T.: A characterization of the disk by eigenfunction of the Steklov eigenvalue. Manuscr. Math. 154, 297–307 (2017)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Ho, P.T.: First eigenvalues of geometric operators under the Yamabe flow (2017). arxiv:1803.07787
  13. 13.
    Ho, P.T.: Prescribed curvature flow on surfaces. Indiana Univ. Math. J. 60, 1517–1542 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Ho, P.T.: The long time existence and convergence of the CR Yamabe flow. Commun. Contemp. Math. 14, 50 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Li, J.F.: Eigenvalues and energy functionals with monotonicity formulae under Ricci flow. Math. Ann. 338, 927–946 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Osgood, B., Phillips, R., Sarnak, P.: Extremals of determinants of Laplacians. J. Funct. Anal. 80, 148–211 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math/0211159
  18. 18.
    Wang, E.M., Zheng, Y.: Regularity of the first eigenvalue of the \(p\)-Laplacian and Yamabe invariant along geometric flows. Pac. J. Math. 254, 239–255 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Wu, J.Y.: First eigenvalue monotonicity for the \(p\)-Laplace operator under the Ricci flow. Acta Math. Sin. (Engl. Ser.) 27, 1591–1598 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wu, J.Y., Wang, E.M., Zheng, Y.: First eigenvalue of the \(p\)-Laplace operator along the Ricci flow. Ann. Glob. Anal. Geom. 38, 27–55 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Zhang, H.: Evolution of curvatures on a surface with boundary to prescribed functions. Manuscr. Math. 149, 153–170 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Zhang, H.: Prescribing the boundary geodesic curvature on a compact scalar-flat Riemann surface via a flow method. Pac. J. Math. 273, 307–330 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Zhao, L.: The first eigenvalue of Laplace operator under powers of mean curvature flow. Sci. China Math. 53, 1703–1710 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Zhao, L.: The first eigenvalue of the \(p\)-Laplace operator under powers of mean curvature flow. Math. Methods Appl. Sci. 37, 744–751 (2014)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Department of MathematicsSogang UniversitySeoulKorea

Personalised recommendations