Advertisement

Pullback formulae for nearly holomorphic Saito–Kurokawa lifts

  • Shih-Yu ChenEmail author
Article
  • 36 Downloads

Abstract

We give explicit pullback formulae for nearly holomorphic Saito–Kurokawa lifts restrict to product of upper half-plane against with product of elliptic modular forms. We generalize the formula of Ichino to modular forms of higher level and free the restriction on weights. The explicit formulae provide non-trivial examples for the refined Gan–Gross–Prasad conjecture for \((\mathrm{SO}_5,\mathrm{SO}_4)\) in the non-tempered cases. As an application, we obtain Deligne’s conjecture for critical values of certain automorphic L-functions for \(\mathrm{{GL}}_3 \times \mathrm{{GL}}_2\). We also expect to apply our pullback formulae to construct two-variables p-adic L-functions for \(\mathrm{{GL}}_3 \times \mathrm{{GL}}_2\) in the future.

Mathematics Subject Classification

11F27 11F67 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgements

The results of this paper are part of the author’s Ph.D. thesis in National Taiwan University. The author would like to thank my advisor Ming-Lun Hsieh for the encouragement and help during the Ph.D. program. This work would been impossible without his guidance and insight on automorphic forms. The author also would like to thank Atsushi Ichino for the suggestions and sharing his program code for numerical examples. Finally the author thanks the referee for the comments on the previous version of this paper.

References

  1. 1.
    Bertolini, M., Darmon, H., Prasanna, K.: Generalized Heegner cycles and \(p\)-adic Rankin \(L\)-series. Duke Math. J. 162(6), 1033–1148 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Baruch, E.M., Mao, Z.: Central value of automorphic \(L\)-functions. Geom. Funct. Anal. 17, 333–384 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Chen, S.-Y., Cheng, Y.: On Deligne’s conjecture for certain automorphic L-functions for \({\rm GL}(3)\times {\rm GL}(2)\) and \({\rm GL}(4)\). arXiv:1806.09767  (submitted)
  4. 4.
    Chen, S.-Y., Cheng, Y., Ishikawa, I.: Gamma factors for Asai representations of \({\rm GL}_2\). arXiv:1810.12561 (submitted)
  5. 5.
    Chen, S.-Y.: Pullback formulas for nearly holomorphic Saito–Kurokawa lifts. Ph.D. Thesis, National Taiwan University (2018)Google Scholar
  6. 6.
    Chengm, Y.: Special value formula for triple product \(L\)-functions and applications. Ph.D. Thesis, National Taiwan University (2018)Google Scholar
  7. 7.
    Dokchitser, T.: Computing special values of motivic \(L\)-functions. Exp. Math. 13, 137–149 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Eischen, E., Harris, M., Li, J., Skinner, C.: \(p\)-adic \(L\)-functions for unitary groups (2016). arXiv:1602.01776
  9. 9.
    Friedberg, S., Hoffstein, J.: Nonvanishing theorems for automorphic \(L\)-functions on \({\rm GL}(2)\). Ann. Math. 142(2), 385–423 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gan, W.T., Gurevich, N.: Restriction of Saito–Kurokawa representations. Contemp. Math. 488, 95–124 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gan, W.T., Gross, B.H., Prasad, D.: Symplectic local root nnumber, central critical \(L\)-values, and restriction problems in the representation theory of classical groups. Astrisque 346, 1–109 (2012)zbMATHGoogle Scholar
  12. 12.
    Ghate, E.: Critical values of the twisted tensor \(L\)-function in the imaginary quadratic case. Duke Math. J. 96, 595–638 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gradshteyn, I.S., Ryzhik, I.M.: Table of Integrals, Series, and Products, 7th edn. Academic Press, Cambridge (2007)zbMATHGoogle Scholar
  14. 14.
    Gross, B.H., Prasad, D.: On the decomposition of a representation of \({\rm SO}_n\) when restricted to \({\rm SO}_{n-1}\). Can. J. Math. 44, 974–1002 (1992)CrossRefGoogle Scholar
  15. 15.
    Hida, H.: A \(p\)-adic measure attached to the zeta functions associated with two elliptic modular forms. I. Invent. Math. 79(1), 159–195 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Hida, H.: A \(p\)-adic measure attached to the zeta functions associated with two elliptic modular forms. II. Ann. Inst. Fourier 38(3), 1–83 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Harris, M., Kudla, S.S.: The central critical value of a triple product \(L\)-function. Ann. Math. 133, 605–672 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Ichino, A.: Pullbacks of Saito–Kurokawa lifts. Invent. Math. 162, 551–647 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Ichino, A.: Trilinear forms and the central values of triple product \(L\)-functions. Duke Math. J. 145(2), 281–307 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Ichino, A., Ikeda, T.: On Maass lifts and the central critical values of triple product \(L\)-functions. Am. J. Math. 130, 75–114 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Ichino, A., Ikeda, T.: On the periods of automorphic forms on special orthogonal groups and the Gross–Prasad conjecture. Geom. Funct. Anal. 19, 1378–1425 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Ikeda, T.: On the functional euqations of the triple \(L\)-functions. Kyoto J. Math. 29, 175–219 (1989)CrossRefzbMATHGoogle Scholar
  23. 23.
    Ikeda, T.: On the location of poles of the triple \(L\)-functions. Compos. Math. 83, 187–237 (1992)MathSciNetzbMATHGoogle Scholar
  24. 24.
    Ikeda, T.: On the gamma factor of the triple \(L\)-function, II. J. Reine Angew. Math. 499, 199–223 (1998)MathSciNetzbMATHGoogle Scholar
  25. 25.
    Ikeda, T.: On the gamma factor of the triple \(L\)-function, I. Duke Math. J. 97(2), 301–318 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Ichino, A., Prasanna, K.: Period of quaternionic Shimura varieties. I. Mem. Am. Math. Soc. (2018). arXiv:1610.00166 (to appear)
  27. 27.
    Januszewski, F.: on period relations for automorphic L-functions, I. Trans. Amer. Math. Soc. (2018).  https://doi.org/10.1090/tran/7527
  28. 28.
    Jacquet, H., Langlands, R.: Automorphic Forms on \({\rm GL}(2)\), volume 114 of Lecture Notes in Mathematics. Springer, Berlin (1970)zbMATHGoogle Scholar
  29. 29.
    Kohnen, W.: Newforms of half-integral weight. J. Reine Angew. Math. 333, 32–72 (1982)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Kohnen, W.: Fourier coefficients of modular forms of half-integral weight. Math. Ann. 271, 237–268 (1985)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Krishnamurthy, M.: The Asai transfer to \({\rm GL}_4\) via the Langlands–Shahidi method. Int. Math. Res. Not. 41(2003), 2221–2254 (2003)CrossRefzbMATHGoogle Scholar
  32. 32.
    Kudla, S.S.: Splitting metaplectic covers of dual reductive pairs. Isr. J. Math. 87, 361–401 (1994)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Loke, H.Y.: Trilinear forms of \(\mathfrak{gl}_2\). Pac. J. Math. 197(1), 119–144 (2001)MathSciNetCrossRefGoogle Scholar
  34. 34.
    Lanphier, D., Skogman, H.: Values of twisted tensor \(L\)-functions of automorphic forms over imaginary quadratic fields. Appendix by H. Ochiai. Can. J. Math 66, 1078–1109 (2014)CrossRefzbMATHGoogle Scholar
  35. 35.
    Lee, S.T., Zhu, C.B.: Degenerate principal series and local theta correspondence II. Isr. J. Math. 100, 29–59 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Maass, H.: Siegel’s Modular Forms and Dirichlet Series, volume 216 of Lecture Notes in Mathematics. Springer, Berlin (1971)CrossRefGoogle Scholar
  37. 37.
    Pal, A., de Vera-Piquero, C.: Pullbacks of Saito–Kurokawa lifts and a central value formula for degree \(6\) \(L\)-series (2018). arXiv:1804.02352
  38. 38.
    Prasad, D.: Invariant linear forms for representations of \({\rm {GL}}(2)\) over a local field. Am. J. Math. 114, 1317–1363 (1992)CrossRefzbMATHGoogle Scholar
  39. 39.
    Prasanna, K.: Arithmetic properties of the Shimura–Shintani–Waldspurger correspondence. With an appendix by Brian Conrad. Invent. Math. 176, 521–600 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Piatetski-Shapiro, I.I., Rallis, S.: Rankin triple \(L\) functions. Compos. Math. 64, 31–115 (1987)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Pitale, A., Saha, A., Schmidt, R.: Lowest weight modules of \({\rm Sp}_4({\mathbb{R}})\) and nearly holomorphic Siegel modular forms (2016). arXiv:1501.00524v2
  42. 42.
    Qiu, Y.: Periods of Saito–Kurokawa representations. Int. Math. Res. Not. 24, 6698–6755 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  43. 43.
    Ranga Rao, R.: On some explicit formulas in the theory of Weil representaion. Pac. J. Math. 157, 335–371 (1993)CrossRefzbMATHGoogle Scholar
  44. 44.
    Shimura, G.: The special values of the zeta functions associated with cusp forms. Commun. Pure Appl. Math. 29, 783–804 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Shimura, G.: On the periods of modular forms. Math. Ann. 229, 211–221 (1977)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Shimura, G.: The periods of certain automorphic forms of arithmetic type. J. Fac. Sci. Univ. Tokyo Sect. 1 A 28, 605–632 (1982)MathSciNetzbMATHGoogle Scholar
  47. 47.
    Slater, L.J.: Generalized Hypergeometric Functions. Cambridge University Press, Cambridge (1966)zbMATHGoogle Scholar
  48. 48.
    Sturm, J.: Special values of zeta functions, and Eisenstein series of half Integral weight. Am. J. Math. 102(2), 219–240 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  49. 49.
    Waldspurger, J.-L.: Correspondance de Shimura. J. Math. Pures Appl. 59, 1–133 (1980)MathSciNetzbMATHGoogle Scholar
  50. 50.
    Waldspurger, J.-L.: Sur les valeurs de certaines fonctions \(L\) automorphes en leur centre de syemetrie. Compos. Math. 54(2), 173–242 (1985)zbMATHGoogle Scholar
  51. 51.
    Waldspurger, J.-L.: Correspondances de Shimra et quaternions. Forum Math. 3, 219–307 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  52. 52.
    Watson, T.: Rankin triple products and quantum chaos. 2008. Ph.D. Dissertation, Princeton University, Princeton (2002). arXiv:0810.0425v3
  53. 53.
    Xue, H.: Central values of degree six \(L\)-functions. https://www.math.arizona.edu/~xuehang/

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Authors and Affiliations

  1. 1.Institute of MathematicsAcademia SinicaTaipeiTaiwan, ROC

Personalised recommendations