Skip to main content
Log in

Revised regularity results for quasilinear elliptic problems driven by the \(\Phi \)-Laplacian operator

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

It is establish regularity results for weak solutions of quasilinear elliptic problems driven by the well known \(\Phi \)-Laplacian operator given by

$$\begin{aligned} \left\{ \ \begin{array}{ll} \displaystyle -\Delta _\Phi u= g(x,u), &{} \hbox {in}~\Omega ,\\ u=0, &{} \hbox {on}~\partial \Omega , \end{array} \right. \end{aligned}$$

where \(\Delta _{\Phi }u :=\hbox {div}(\phi (|\nabla u|)\nabla u)\) and \(\Omega \subset \mathbb {R}^{N}, N \ge 2,\) is a bounded domain with smooth boundary \(\partial \Omega \). Our work concerns on nonlinearities g which can be homogeneous or non-homogeneous. For the homogeneous case we consider an existence result together with a regularity result proving that any weak solution remains bounded. Furthermore, for the non-homogeneous case, the nonlinear term g can be subcritical or critical proving also that any weak solution is bounded. The proofs are based on Moser’s iteration in Orlicz and Orlicz-Sobolev spaces.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams, R.A., Fournier, J.F.: Sobolev Spaces. Academic Press, New York (2003)

    MATH  Google Scholar 

  2. Alves, C.O., Carvalho, M.L.M., Gonçalves, J.V.: On existence of solution of variational multivalued elliptic equations with critical growth via the Ekeland principle. Commun. Contemp. Math. 17(6), 1450038 (2015)

    Article  MathSciNet  Google Scholar 

  3. Boccardo, L., Murat, F.: Almost everywhere convergence of the gradients of solutions to elliptic and parabolic equations. Nonlinear Anal. 19(6), 581–597 (1992)

    Article  MathSciNet  Google Scholar 

  4. Bonanno, G., Molica Bisci, G., Rădulescu, V.: Existence of three solutions for a non-homogeneous Neumann problem through Orlicz–Sobolev spaces. Topol. J. Nonlinear Anal. 74, 4785–4795 (2011)

    Article  MathSciNet  Google Scholar 

  5. Bonanno, G., Molica Bisci, G., Rădulescu, V.: Quasilinear elliptic non-homogeneous Dirichlet problems through Orlicz–Sobolev spaces. Topol. J. Math. Nonlinear Anal. 75, 4441–4456 (2012)

    Article  MathSciNet  Google Scholar 

  6. Brezis, H., Kato, T.: Remarks on the Schrödinger operator with singular complex potentials. J. Math. Pures Appl. 58, 137–151 (1979)

    MathSciNet  MATH  Google Scholar 

  7. Cianchi, A.: Local boundedness of minimizers of anisotropic functionals. Ann. Inst. Henri Poincaré 17, 147–168 (2000)

    Article  MathSciNet  Google Scholar 

  8. Di Benedetto, E.: \(C^{1,\alpha }\) local regularity of weak solutions of degenerate elliptic equations. Nonlinear Anal. Theory Methods Appl. 7(8), 827–850 (1983)

    Article  Google Scholar 

  9. Fiscella, A., Pucci, P.: \((p, q)\) systems with critical terms in \(\mathbb{R}^N\). Special issue nonlinear PDEs and geometric function theory, in honor of Carlo Sbordone on his 70th birthday. Nonlinear Anal. 177(Part B), 454–479 (2018)

    Article  MathSciNet  Google Scholar 

  10. Fucks, M., Gongbao, L.: \(L^\infty \)-bounds for elliptic equations on Orlicz–Sobolev spaces. Arch. Math. (Basel) 72(4), 293–297 (1999)

    Article  MathSciNet  Google Scholar 

  11. Fukagai, N., Narukawa, K.: On the existence of multiple positive solutions of quasilinear elliptic eigenvalue problems. Annali di Matematica 186, 539–564 (2007)

    Article  MathSciNet  Google Scholar 

  12. Fukagai, N., Ito, M., Narukawa, K.: Positive solutions of quasilinear elliptic equations with critical Orlicz–Sobolev nonlinearity on \(\mathbb{R}^{N}\). Funkcialaj Ekvacioj 49, 235–267 (2006)

    Article  MathSciNet  Google Scholar 

  13. Gossez, J.P.: Nonlinear elliptic boundary value problems for equations with raplidy (or slowly) incressing coefficients. Trans. Am. Math. Soc. 190, 163–205 (1974)

    Article  Google Scholar 

  14. Gossez, J.P.: Orlicz–Sobolev spaces and nonlinear elliptic boundary value problems. In: Nonlinear Analysis, Function Spaces and Applications (Proc. Spring School, Horni Bradlo, 1978), Teubner, Leipzig, pp. 59–94 (1979)

  15. Ladyzenskaja, O.A., Uraltseva, N.N.: Linear and Quasilinear Elliptic Equations. Academic Press, New York (1968)

    Google Scholar 

  16. Le, V.K.: A global bifurcation result for quasilinear elliptic equations in Orlicz–Sobolev spaces. Topol. Methods Nonlinear Anal. 15, 301–327 (1979)

    Article  MathSciNet  Google Scholar 

  17. Lieberman, G.M.: The natural generalization of the natural conditions of Ladyzhenskaya and Uraltseva. In: Miniconference on Operators in Analysis, (Sydney, 1989), Proc. Centre Math. Anal. Austral. Nat. Univ., vol. 24, pp. 151–158. Austral. Nat. Univ., Canberra (1990)

  18. Lou, H.: On singular sets of local solutions to \(p\)-Laplace equations. Chin. Ann. Math. 29B(5), 521–530 (2008)

    Article  MathSciNet  Google Scholar 

  19. Mihăilescu, M., Rădulescu, V.: Existence and multiplicity of solutions for quasilinear nonhomogeneous problems: an Orlicz–Sobolev space setting. Topol. J. Math. Anal. Appl. 330, 416–432 (2007)

    Article  MathSciNet  Google Scholar 

  20. Peral, I.: Multiplicity of solutions for the \(p\)-Laplacian. In: Second School of Nonlinear Functional Analysis and Applications to Differential Equations, International Center for Theoretical Physics Trieste (1997)

  21. Pucci, P., Serrin, J.: The strong maximum principle revisited. J. Differ. Equ. 196, 1–66 (2004)

    Article  MathSciNet  Google Scholar 

  22. Pucci, P., Servadei, R.: Regularity of weak solutions of homogeneous or inhomogeneous quasilinear elliptic equations. Indiana Univ. Math. J. 57(7), 3329–3363 (2008)

    Article  MathSciNet  Google Scholar 

  23. Rao, M.N., Ren, Z.D.: Theory of Orlicz Spaces. Marcel Dekker, New York (1985)

    Google Scholar 

  24. Struwe, M.: Variational Methods Applications to Nonlinear Partial Differential Equations and Hamiltonian Systems. Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 3. Springer, Berlin (2000)

    Google Scholar 

  25. Tan, Z., Fang, F.: Orlicz–Sobolev versus Hölder local minimizer and multiplicity results for quasilinear elliptic equations. J. Math. Anal. Appl. 402, 348–370 (2013)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. L. Carvalho.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Research supported in part by INCTmat/MCT/Brazil, CNPq and CAPES/Brazil. The authors was partially supported by Fapeg/CNpq Grants 03/2015-PPP.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, E.D., Carvalho, M.L. & de Albuquerque, J.C. Revised regularity results for quasilinear elliptic problems driven by the \(\Phi \)-Laplacian operator. manuscripta math. 161, 563–582 (2020). https://doi.org/10.1007/s00229-019-01110-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-019-01110-3

Mathematics Subject Classification

Navigation