Skip to main content
Log in

Classifying Fano complexity-one T-varieties via divisorial polytopes

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

The correspondence between Gorenstein Fano toric varieties and reflexive polytopes has been generalized by Ilten and Süß to a correspondence between Gorenstein Fano complexity-one T-varieties and Fano divisorial polytopes. Motivated by the finiteness of reflexive polytopes in fixed dimension, we show that over a fixed base polytope, there are only finitely many Fano divisorial polytopes, up to equivalence. We classify two-dimensional Fano divisorial polytopes, recovering Huggenberger’s classification of Gorenstein del Pezzo \(\mathbb {K}^*\)-surfaces. Furthermore, we show that any three-dimensional Fano divisorial polytope is equivalent to one involving only eight functions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Bechtold, B., Hausen, J., Huggenberger, E., Nicolussi, M.: On terminal Fano 3-folds with 2-torus action. Int. Math. Res. Not. IMRN 5, 1563–1602 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  2. Cox, D.A., Little, J.B., Schenck, H.K.: Toric Varieties, Volume 124 of Graduate Studies in Mathematics. American Mathematical Society, Providence (2011)

    Google Scholar 

  3. Cable, J., Süß, H.: On the classification of Kähler–Ricci solitions on Gorenstein del Pezzo surfaces. arXiv:1705.02920v1 (2017)

  4. Fahrner, A., Hausen, J., Nicolussi, M.: Smooth projective varieties with a torus action of complexity 1 and Picard number 2. arXiv:1602.04360v3 (2017)

  5. Fulton, W.: Introduction to Toric Varieties, Volume 131 of Annals of Mathematics Studies. Princeton University Press, Princeton (1993). [The William H. Roever Lectures in Geometry]

    Google Scholar 

  6. Hausen, J.: Three lectures on Cox rings. In: Torsors, étale Homotopy and Applications to Rational Points, Volume 405 of London Mathematical Society of Lecture Note Series, pp. 3–60. Cambridge University Press, Cambridge (2013)

  7. Hausen, J., Herppich, E., Süss, H.: Multigraded factorial rings and Fano varieties with torus action. Doc. Math. 16, 71–109 (2011)

    MathSciNet  MATH  Google Scholar 

  8. Huggenberger, E.: Fano varieties with torus action of complexity one. Ph.D. thesis, Doctoral thesis. http://nbn-resolving.de/urn:nbn:de:bsz:21-opus-69570 (2013)

  9. Ilten, N.O., Hendrik, S.: Polarized complexity-1 \(T\)-varieties. Mich. Math. J. 60(3), 561–578 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ilten, N., Süss, H.: K-stability for Fano manifolds with torus action of complexity 1. Duke Math. J. 166(1), 177–204 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kreuzer, M., Skarke, H.: On the classification of reflexive polyhedra. Commun. Math. Phys. 185, 495–508 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  12. Lagarias, J.C., Ziegler, G.M.: Bounds for lattice polytopes containing a fixed number of interior points in a sublattice. Can. J. Math. 43(5), 1022–1035 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nathan Ilten.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ilten, N., Mishna, M. & Trainor, C. Classifying Fano complexity-one T-varieties via divisorial polytopes. manuscripta math. 158, 463–486 (2019). https://doi.org/10.1007/s00229-018-1036-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-018-1036-x

Navigation