Skip to main content
Log in

A Lie theoretical construction of a Landau–Ginzburg model without projective mirrors

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We describe the Fukaya–Seidel category of a Landau–Ginzburg model \(\mathrm {LG}(2)\) for the semisimple adjoint orbit of \(\mathfrak {sl}(2, {\mathbb {C}})\). We prove that this category is equivalent to a full triangulated subcategory of the category of coherent sheaves on the second Hirzebruch surface. We show that no projective variety can be mirror to \(\mathrm {LG}(2)\), and that this remains so after compactification.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Atiyah, M.F.: On analytic surfaces with double points. Proc. R. Soc. Lond. Ser. A Math. Phys 247, 237–244 (1958)

    MathSciNet  MATH  Google Scholar 

  2. Auroux, D.: A beginner’s introduction to Fukaya categories. In: Bourgeois, F., Colin, V., Stipsicz, A. (eds.) Contact and Symplectic Topology, pp. 85–136. Springer, Heidelberg (2016)

    Google Scholar 

  3. Auroux, D., Katzarkov, L., Orlov, D.: Mirror symmetry for weighted projective planes and their noncommutative deformations. Ann. Math. 167, 867–943 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ballico, E., Gasparim, E., Grama, L., San Martin, L.A.B.: Some Landau–Ginzburg models viewed as rational maps. Indag. Math. 28, 615–628 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barmeier, S.: Ph.D. thesis (in preparation)

  6. Barmeier, S., Gasparim, E.: Classical deformations of noncompact surfaces and their moduli of instantons. arXiv:1604.01133

  7. Fukaya, K., Oh, Y., Ohta, H., Ono, K.: Lagrangian Intersection Floer Theory: Anomaly and Obstruction, Part I. American Mathematical Society/International Press, Somerville (2009)

    MATH  Google Scholar 

  8. Gasparim, E., Grama, L., San Martin, L.A.B.: Symplectic Lefschetz fibrations on adjoint orbits. Forum Math. 28, 967–979 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gasparim, E., Grama, L., San Martin, L.A.B.: Adjoint orbits of semi-simple Lie groups and Lagrangian submanifolds. Proc. Edinb. Math. Soc. 60, 361–385 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gorodentscev, A., Kuleshov, S., Rudakov, A.: \(t\)-stabilities and \(t\)-structures on triangulated categories (Russian). Izv. Ross. Akad. Nauk Ser. Mat. 68, 117–150 (2004), translation in Izv. Math. 68, 749–781 (2004)

  11. Hille, L., Perling, M.: Tilting bundles on rational surfaces and quasi-hereditary algebras. Ann. Inst. Fourier 64, 625–644 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kashiwara, M., Schapira, P.: Sheaves on Manifolds. Springer, Berlin (1994)

    MATH  Google Scholar 

  13. Khovanov, M., Seidel, P.: Quivers, Floer cohomology, and braid group actions. J. Am. Math. Soc. 15, 203–271 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kuznetsov, A., Lunts, V.A.: Categorical resolutions of irrational singularities. Int. Math. Res. Not. 13, 4536–4625 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Orlov, D.: Geometric realizations of quiver algebras. Proc. Steklov Inst. Math. 290, 70–83 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  16. Seidel, P.: More about vanishing cycles and mutation. In: Symplectic Geometry and Mirror Symmetry. Proceedings of the 4th KIAS Annual International Conference, Seoul, South Korea, 14–18 August 2000, pp. 429–465. World Scientific (2001)

  17. Tyurina, G.N.: Resolution of singularities of plane deformations of double rational points. Funkc. Anal. i Prilož. 4, 77–83 (1970), translation in Funct. Anal. Appl. 4, 68–73 (1970)

  18. Wei, Z.: The full exceptional collections of categorical resolutions of curves. J. Pure Appl. Algebra 220, 3332–3344 (2016)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

We are grateful to Patrick Clarke for pointing out a significant improvement to an earlier version of this work. We thank Denis Auroux, Lutz Hille, Ludmil Katzarkov, and Sukhendu Mehrotra for helpful suggestions and comments. S. Barmeier is supported by the Studienstiftung des deutschen Volkes. Part of this work was completed during a visit of L. Grama to Chile. We are thankful to the Vice Rectoría de Investigación and Desarrollo Tecnológico of the Universidad Católica del Norte whose support made this visit possible. L. Grama is partially supported by FAPESP Grant 2016/22755-1. E. Gasparim was partially supported by a Simons Associateship ICTP, and Network Grant NT8, Office of External Activities, ICTP, Italy. E. Ballico was partially supported by MIUR and GNSAGA of INdAM (Italy).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to E. Gasparim.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ballico, E., Barmeier, S., Gasparim, E. et al. A Lie theoretical construction of a Landau–Ginzburg model without projective mirrors. manuscripta math. 158, 85–101 (2019). https://doi.org/10.1007/s00229-018-1024-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-018-1024-1

Mathematics Subject Classification

Navigation