Skip to main content
Log in

Fourier coefficients for degenerate Eisenstein series and the descending decomposition

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We prove a Lie-theoretic result for type A root systems. This allows us to determine the unipotent orbits attached to degenerate Eisenstein series on general linear groups, confirming a conjecture of David Ginzburg. In particular, this also shows that any unipotent orbit of general linear groups does occur as the unipotent orbit attached to a specific automorphic representation. The proof of the Lie-theoretic result relies on the notion of the descending decomposition, which expresses every Weyl group element as a product of simple reflections in a certain way. It is suitable for induction and allows us to translate the question into a combinatorial statement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bernstein, I.N., Zelevinsky, A.V.: Induced representations of reductive \({\mathfrak{p}}\)-adic groups. I. Ann. Sci. École Norm. Sup. (4) 10, 441–472 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bump, D.: Lie Groups, vol. 225 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (2013)

    Google Scholar 

  3. Cai, Y.: Fourier coefficients for Theta representations on covers of general linear groups. Trans. Amer. Math. Soc. (2016). arXiv:1602.06614. doi:10.1090/tran/7429 (to appear)

  4. Carter, R.W.: Finite groups of Lie type, Pure and Applied Mathematics (New York). Wiley, New York (1985). Conjugacy classes and complex characters, A Wiley-Interscience Publication

  5. Casselman, W.: Introduction to the theory of admissible representations of \(p\)-adic reductive groups, unpublished notes

  6. Casselman, W., Shalika, J.: The unramified principal series of \(p\)-adic groups. II. The Whittaker function. Compos. Math. 41, 207–231 (1980)

    MathSciNet  MATH  Google Scholar 

  7. Collingwood, D.H., McGovern, W.M.: Nilpotent Orbits in Semisimple Lie Algebras, Van Nostrand Reinhold Mathematics Series. Van Nostrand Reinhold Co., New York (1993)

    Google Scholar 

  8. Fleig, P., Gustafsson, H.P., Kleinschmidt, A., Persson, D.: Eisenstein series and automorphic representations (2015). arXiv:1511.04265

  9. Ginzburg, D.: Certain conjectures relating unipotent orbits to automorphic representations. Isr. J. Math. 151, 323–355 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Ginzburg, D.: Eulerian integrals for \({\rm GL}_n\). In: Multiple Dirichlet Series, Automorphic Forms, and Analytic Number Theory, vol. 75 of Proceedings of Symposium Pure Mathematics, American Mathematical Society, Providence, RI, pp. 203–223 (2006)

  11. Ginzburg, D.: Towards a classification of global integral constructions and functorial liftings using the small representations method. Adv. Math. 254, 157–186 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ginzburg, D., Rallis, S., Soudry, D.: On Fourier coefficients of automorphic forms of symplectic groups. Manuscr. Math. 111, 1–16 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  13. Ginzburg, D., Rallis, S., Soudry, D.: The Descent Map from Automorphic Representations of \({\rm GL}(n)\) to Classical Groups. World Scientific Publishing Co Pte. Ltd., Hackensack, NJ (2011)

    Book  MATH  Google Scholar 

  14. Gomez, R., Gourevitch, D., Sahi, S.: Generalized and degenerate Whittaker models. Compos. Math. 153, 223–256 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  15. Green, M.B., Miller, S.D., Russo, J.G., Vanhove, P.: Eisenstein series for higher-rank groups and string theory amplitudes. Commun. Number Theory Phys. 4, 551–596 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Gustafsson, H.P.A., Kleinschmidt, A., Persson, D.: Small automorphic representations and degenerate Whittaker vectors. J. Number Theory 166, 344–399 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Jiang, D.: Automorphic integral transforms for classical groups I: endoscopy correspondences. In: Automorphic Forms and Related Geometry: Assessing the Legacy of I. I. Piatetski-Shapiro, vol. 614 of Contemporary Mathematics, American Mathematical Society, Providence, RI, pp. 179–242 (2014)

  18. Jiang, D., Liu, B.: On Fourier coefficients of automorphic forms of \({\rm GL}(n)\). Int. Math. Res. Not. IMRN, 4029–4071 (2013)

  19. Jiang, D., Liu, B.: Arthur parameters and Fourier coefficients for automorphic forms on symplectic groups. Ann. Inst. Fourier 66, 477–519 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jiang, D., Liu, B., Savin, G.: Raising nilpotent orbits in wave-front sets. Represent Theory 20, 419–450 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Littelmann, P.: Cones, crystals, and patterns. Transform. Groups 3, 145–179 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  22. Matumoto, H.: Whittaker vectors and associated varieties. Invent. Math. 89, 219–224 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miller, S.D., Sahi, S.: Fourier coefficients of automorphic forms, character variety orbits, and small representations. J. Number Theory 132, 3070–3108 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Mœglin, C.: Front d’onde des représentations des groupes classiques \(p\)-adiques. Am. J. Math. 118, 1313–1346 (1996)

    Article  MATH  Google Scholar 

  25. Mœglin, C., Waldspurger, J.-L.: Modèles de Whittaker dégénérés pour des groupes \(p\)-adiques. Math. Z. 196, 427–452 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  26. Reeder, M.: Notes on group theory. https://www2.bc.edu/mark-reeder/Groups.pdf

  27. Shahidi, F.: Whittaker models for real groups. Duke Math. J. 47, 99–125 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  28. Zelevinsky, A.V.: Induced representations of reductive \({\mathfrak{p}}\)-adic groups. II. On irreducible representations of \({\rm GL}(n)\). Ann. Sci. École Norm. Sup. (4) 13, 165–210 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuanqing Cai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cai, Y. Fourier coefficients for degenerate Eisenstein series and the descending decomposition. manuscripta math. 156, 469–501 (2018). https://doi.org/10.1007/s00229-017-0984-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-017-0984-x

Mathematics Subject Classification

Navigation