Skip to main content
Log in

Weighted Cheeger sets are domains of isoperimetry

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We consider a generalization of the Cheeger problem in a bounded, open set \(\Omega \) by replacing the perimeter functional with a Finsler-type surface energy and the volume with suitable powers of a weighted volume. We show that any connected minimizer A of this weighted Cheeger problem such that \(\mathcal {H}^{n-1}(A^{(1)} \cap \partial A)=0\) satisfies a relative isoperimetric inequality. If \(\Omega \) itself is a connected minimizer such that \(\mathcal {H}^{n-1}(\Omega ^{(1)} \cap \partial \Omega )=0\), then it allows the classical Sobolev and BV embeddings and the classical BV trace theorem. The same result holds for any connected minimizer whenever the weights grant the regularity of perimeter-minimizer sets and \(\Omega \) is such that \(|\partial \Omega |=0\) and \(\mathcal {H}^{n-1}(\Omega ^{(1)} \cap \partial \Omega )=0\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ambrosio, L., Fusco, N., Pallara, D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Clarendon Press, Oxford (2000)

    MATH  Google Scholar 

  2. Brasco, L., Lindgren, E., Parini, E.: The fractional Cheeger problem. Interfaces Free Bound. 16(3), 419–458 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Carlier, G., Comte, M.: On a weighted total variation minimization problem. J. Funct. Anal. 250(1), 214–226 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Caselles, V., Facciolo, G., Meinhardt, E.: Anisotropic Cheeger sets and applications. SIAM J. Imaging Sci. 2(4), 1211–1254 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Caselles, V., Miranda Jr., M., Novaga, M.: Total variation and Cheeger sets in Gauss space. J. Funct. Anal. 259, 1491–1516 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cheeger, J.: A lower bound for the smallest eigenvalue of the Laplacian. In: Problems in Analysis (Papers dedicated to Salomon Bochner, 1969), pp. 195–199. Princeton University Press, Princeton (1970)

  7. Cinti, E., Pratelli, A.: The \(\epsilon -\epsilon ^\beta \) property, the boundedness of isoperimetric sets in \({\mathbb{R}}^n\) with density, and some applications. J. Reine Angew. Math. 728, 65–103 (2017). doi:10.1515/crelle-2014-0120

    MathSciNet  MATH  Google Scholar 

  8. David, G., Semmes, S.: Quasiminimal surfaces of codimension \(1\) and John domains. Pac. J. Math. 183(2), 213–277 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Federer, H.: Geometric Measure Theory. Die Grundlehren der mathematischen Wissenschaften, vol. 153. Springer, New York (1969)

    Google Scholar 

  10. Hassani, R., Ionescu, I.R., Lachand-Robert, T.: Optimization techniques in landslides modelling. Ann. Univ. Craiova Ser. Math. Inform. 32, 158–169 (2005)

    MathSciNet  MATH  Google Scholar 

  11. Ionescu, I.R., Lachand-Robert, T.: Generalized Cheeger sets related to landslides. Calc. Var. Partial Differ. Equ. 23(2), 227–249 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Kawohl, B., Fridman, V.: Isoperimetric estimates for the first eigenvalue of the \(p\)-Laplace operator and the Cheeger constant. Comment. Math. Univ. Carol. 44(4), 659–667 (2003)

    MathSciNet  MATH  Google Scholar 

  13. Krejčiřík, D., Kříz, J.: On the spectrum of curved quantum waveguides. Publ. Res. Inst. Math. Sci. 41(3), 757–791 (2015)

    MATH  Google Scholar 

  14. Krejčiřík, D., Pratelli, A.: The Cheeger constant of curved strips. Pac. J. Math. 254(2), 309–333 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Leonardi, G.P.: An overview on the Cheeger problem. In: Pratelli, A., Leugering, G. (eds.) New Trends in Shape Optimization. International Series of Numerical Mathematics, vol. 166, pp. 117–139. Birkhäuser, Cham (2015). doi:10.1007/978-3-319-17563-8_6

  16. Leonardi, G.P., Pratelli, A.: On the Cheeger sets in strips and non-convex domains. Calc. Var. Partial Differ. Equ. 55(1), 1–28 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  17. Leonardi, G.P., Saracco, G.: The prescribed mean curvature equation in weakly regular domains. Submitted (2016). http://cvgmt.sns.it/paper/3089/

  18. Leonardi, G.P., Saracco, G.: Two examples of minimal Cheeger sets in the plane. Submitted (2017). http://cvgmt.sns.it/paper/3565/

  19. Maggi, F.: Sets of Finite Perimeter and Geometric Variational Problems. Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (2012)

    Book  Google Scholar 

  20. Maz’ya, V.: Sobolev Spaces with Applications to Elliptic Partial Differential Equations, vol. 342, 2nd edn. Springer, Berlin (2011)

    MATH  Google Scholar 

  21. Morgan, F.: Regularity of isoperimetric hypersurfaces in riemannian manifolds. Trans. Am. Math. Soc. 355(12), 5041–5052 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  22. Parini, E.: An introduction to the Cheeger problem. Surv. Math. Appl. 6, 9–21 (2011)

    MathSciNet  MATH  Google Scholar 

  23. Pratelli, A., Saracco, G.: On the generalized Cheeger problem and an application to 2d strips. Rev. Mat. Iberoam. 33(1), 219–237 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  24. Reshetnyak, Y.G.: Weak convergence of completely additive vector functions on a set. Sib. Math. J. 9, 1039–1045 (1968)

    Article  MATH  Google Scholar 

  25. Rudin, L.I., Osher, S., Fatemi, E.: Nonlinear total variation based noise removal algorithms. Phys. D. Nonlinear Phenom. 60(1), 256–268 (1992)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giorgio Saracco.

Additional information

G. Saracco has been supported by the 2016 INDAM-GNAMPA project Variational problems and geometric measure theory in metric spaces.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Saracco, G. Weighted Cheeger sets are domains of isoperimetry. manuscripta math. 156, 371–381 (2018). https://doi.org/10.1007/s00229-017-0974-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-017-0974-z

Mathematics Subject Classification

Navigation