manuscripta mathematica

, Volume 156, Issue 1–2, pp 57–61 | Cite as

Lorentzian CR structures and nonembeddability



In this paper we construct examples of CR deformations of Lorentzian hypersurfaces which are CR embeddable at all points outside an arbitrarily small compact set whose interior contains a point where CR embeddablity is not possible.

Mathematics Subject Classification

32V05 32V30 32G07 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.



The first author was supported by Deutsche Forschungsgemeinschaft (DFG, German Research Foundation, Grant BR 3363/2-1).


  1. 1.
    Andreotti, A., Hill, C.D., Levi, E.E.: Convexity and the Hans Lewy problem. Part II: Vanishing theorems. Ann. Sc. Norm. Super Pisa 26, 747–806 (1972)MATHGoogle Scholar
  2. 2.
    Brinkschulte, J., Hill, C.D.: Inflexible \(CR\) submanifolds. Math. Z. (2016). doi: 10.1007/s00209-016-1831-6 MATHGoogle Scholar
  3. 3.
    Dufresnoy, A.: Sur l’opérateur \(d^{\prime \prime }\) et les fonctions différentiables au sens de Whitney. Ann. Inst. Fourier 29, 229–238 (1979)MathSciNetCrossRefMATHGoogle Scholar
  4. 4.
    Hill, C.D.: Counterexamples to Newlander-Nirenberg up to the boundary. Proc. Symp. Pure Math. 52, 191–197 (1991)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Hill, C.D., Nacinovich, M.: Embeddable \(CR\) manifolds with nonembeddable smooth boundary. BUMI 7, 387–395 (1993)MathSciNetMATHGoogle Scholar
  6. 6.
    Hill, C.D., Nacinovich, M.: Non completely solvable systems of complex first order PDE’s. Rend. Semin. Mat. Univ. Padova 129, 129–168 (2013)MathSciNetCrossRefMATHGoogle Scholar
  7. 7.
    Jacobowitz, H., Trèves, F.: Abberant \(CR\) structures. Hokkaido Math. J. 12, 276–292 (1983)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Jacobowitz, H., Trèves, F.: Erratum: abberant \(CR\) structures. Hokkaido Math. J. 42, 473–474 (2013)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Universität Leipzig, Mathematisches InstitutLeipzigGermany
  2. 2.Department of MathematicsStony Brook UniversityStony BrookUSA

Personalised recommendations