manuscripta mathematica

, Volume 156, Issue 1–2, pp 137–147 | Cite as

Interpolation for Brill–Noether space curves

  • Isabel VogtEmail author


In this note we compute the number of general points through which a general Brill–Noether space curve passes.

Mathematics Subject Classification

14H50 14H60 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Arbarello, E., Cornalba, M., Griffiths, P.A., Harris, J.: Geometry of Algebraic Curves. Vol. I, volume 267 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, New York (1985)Google Scholar
  2. 2.
    Atanasov, A., Larson, E., Yang, D.: Interpolation for normal bundles of general curves.
  3. 3.
    Atanasov, A.V.: Interpolation and vector bundles on curves. ProQuest LLC, Ann Arbor, MI. Thesis (Ph.D.)-Harvard University (2015)Google Scholar
  4. 4.
    Coskun, I.: Degenerations of surface scrolls and the Gromov-Witten invariants of Grassmannians. J. Algebraic Geom. 15(2), 223–284 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Debarre, O.: Higher-Dimensional Algebraic Geometry. Universitext. Springer, New York (2001)CrossRefzbMATHGoogle Scholar
  6. 6.
    Demazure, M., Pinkham, H.C., Teissier, B. (eds.) Séminaire sur les Singularités des Surfaces, volume 777 of Lecture Notes in Mathematics. Springer, Berlin (1980). Held at the Centre de Mathématiques de l’École Polytechnique, Palaiseau, 1976–1977Google Scholar
  7. 7.
    Ein, L., Lazarsfeld, R.: Stability and restrictions of Picard bundles, with an application to the normal bundles of elliptic curves. In: Complex projective geometry (Trieste, 1989/Bergen, 1989), volume 179 of London Math. Soc. Lecture Note Ser., pp. 149–156. Cambridge Univ. Press, Cambridge (1992)Google Scholar
  8. 8.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Wiley Classics Library. Wiley, New York (1994). Reprint of the 1978 originalGoogle Scholar
  9. 9.
    Keem, C., Kim, S.J.: Irreducibility of a subscheme of the Hilbert scheme of complex space curves. J. Algebra 145(1), 240–248 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Landesman, A.: Interpolation of varieties of minimal degree.
  11. 11.
    Landesman, A., Patel, A.: Interpolation problems: Del pezzo surfaces.
  12. 12.
    Larson, E.: The generality of a section of a curve.
  13. 13.
    Perrin, D.: Courbes passant par \(k\) points généraux de \({\mathbb{P}}^3\). C. R. Acad. Sci. Paris Sér. I Math. 299(10), 451–453 (1984)MathSciNetzbMATHGoogle Scholar
  14. 14.
    Ran, Z.: Normal bundles of rational curves in projective spaces. Asian J. Math. 11(4), 567–608 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sacchiero, G.: Normal bundles of rational curves in projective space. Ann. Univ. Ferrara Sez. VII (N.S.), 26, 33–40 (1981), 1980Google Scholar
  16. 16.
    Stevens, J.: On the number of points determining a canonical curve. Nederl. Akad. Wetensch. Indag. Math. 51(4), 485–494 (1989)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany 2017

Authors and Affiliations

  1. 1.Department of MathematicsMassachusetts Institute of TechnologyCambridgeUSA

Personalised recommendations