Skip to main content
Log in

Fractional NLS equations with magnetic field, critical frequency and critical growth

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

The paper is devoted to the study of singularly perturbed fractional Schrödinger equations involving critical frequency and critical growth in the presence of a magnetic field. By using variational methods, we obtain the existence of mountain pass solutions \(u_{\varepsilon }\) which tend to the trivial solution as \(\varepsilon \rightarrow 0\). Moreover, we get infinitely many solutions and sign-changing solutions for the problem in absence of magnetic effects under some extra assumptions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Applebaum, D.: Lévy processes-from probability to finance and quantum groups. Notices Am. Math. Soc. 51, 1336–1347 (2004)

    MATH  Google Scholar 

  2. Autuori, G., Pucci, P.: Elliptic problems involving the fractional Laplacian in \(\mathbb{R}^N\). J. Differ. Equ. 255, 2340–2362 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brézis, H., Nirenberg, L.: Positive solutions of nonlinear elliptic equations involving critical Sobolev exponents. Commun. Pure Appl. Math. 36, 437–477 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  4. Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear Schrodinger equations. Arch. Ration. Mech. Anal. 165, 295–316 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Byeon, J., Wang, Z.-Q.: Standing waves with a critical frequency for nonlinear Schrödinger equations, II. Calc. Var. Partial Differ. Equ. 18, 207–219 (2003)

    Article  MATH  Google Scholar 

  6. Coffman, C.V.: A minimum-maximum principle for a class of non-linear integral equations. J. Anal. Math. 22, 392–419 (1969)

    Article  MathSciNet  Google Scholar 

  7. Chabrowski, J.: Variational Methods for Potential Operator Equations, de Gruyter Studies in Mathematics, vol. 24. de Gruyter (1997)

  8. Chang, X.J., Wang, Z.-Q.: Ground state of scalar field equations involving a fractional Laplacian with general nonlinearity. Nonlinearity 26, 479–494 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chen, G.Y., Zheng, Y.Q.: Concentration phenomenon for fractional nonlinear Schrödinger equations. Commun. Pure Appl. Anal. 13, 2359–2376 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  10. Cheng, M.: Bound state for the fractional Schrödinger equation with unbounded potential. J. Math. Phys. 53, 043507 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Dávila, J., del Pino, M., Wei, J.C.: Concentrating standing waves for the fractional nonlinear Schrödinger equation. J. Differ. Equ. 256, 858–892 (2014)

    Article  MATH  Google Scholar 

  12. Di Nezza, E., Palatucci, G., Valdinoci, E.: Hitchhiker’s guide to the fractional Sobolev spaces. Bull. Sci. Math. 136, 521–573 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. d’Avenia, P., Squassina, M.: Ground states for fractional magnetic operators. ESAIM Control Optim. Calc. Var (2016). doi:10.1051/cocv/2016071

    Google Scholar 

  14. Ding, Y., Wang, Z.-Q.: Bound states of nonlinear Schrödinger equations with magnetic fields. Ann. Mat. Pura Appl. 190, 427–451 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ding, Y., Lin, F.: Solutions of perturbed Schrödinger equations with critical nonlinearity. Calc. Var. Partial Differ. Equ. 30, 231–249 (2007)

    Article  MATH  Google Scholar 

  16. Esteban, M., Lions, P.L.: Stationary solutions of nonlinear Schrödinger equations with an external magnetic field. In: Partial Differential Equations and the Calculus of Variations, vol. I, pp. 401–449, Progr. Nonlinear Differential Equations Appl. 1, Birkhäuser Boston, Boston, MA (1989)

  17. Felmer, P., Quaas, A., Tan, J.G.: Positive solutions of the nonlinear Schrödinger equation with the fractional Laplacian. Proc. R. Soc. Edinb. A 142, 1237–1262 (2012)

    Article  MATH  Google Scholar 

  18. Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal. 94, 156–170 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  19. Ichinose, T.: Magnetic relativistic Schrödinger operators and imaginary-time path integrals. In: Mathematical Physics, Spectral Theory and Stochastic Analysis, pp. 247–297, Oper. Theory Adv. Appl., vol. 232. Birkhäuser/Springer Basel AG, Basel (2013)

  20. Ichinose, T.: Essential selfadjointness of the Weyl quantized relativistic Hamiltonian. Ann. Inst. H. Poincaré Phys. Théor. 51, 265–297 (1989)

    MathSciNet  MATH  Google Scholar 

  21. Ichinose, T., Tamura, H.: Imaginary-time path integral for a relativistic spinless particle in an electromagnetic field. Commun. Math. Phys. 105, 239–257 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  22. Laskin, N.: Fractional quantum mechanics and Lévy path integrals. Phys. Lett. A 268, 298–305 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  23. Laskin, N.: Fractional Schrödinger equation. Phys. Rev. E 66, 056108 (2002)

    Article  MathSciNet  Google Scholar 

  24. Ledesma, C.: Existence and concentration of solutions for a nonlinear fractional Schrödinger equations with steep potential well. Commun. Pure Appl. Anal. 15, 535–547 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  25. Pucci, P., Xiang, M.Q., Zhang, B.L.: Multiple solutions for nonhomogeneous Schrödinger-Kirchhoff type equations involving the fractional \(p\)-Laplacian in \(\mathbb{R}^N\). Calc. Var. Partial Differ. Equ. 54, 2785–2806 (2015)

    Article  MATH  Google Scholar 

  26. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, IV Analysis of Operators. Academic Press, London (1978)

    MATH  Google Scholar 

  27. Secchi, S.: Ground states solutions for nonlinear fractional Schrödinger equations in \(\mathbb{R}^n\). J. Math. Phys. 54, 031501 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  28. Shen, Z., Gao, F.: On the existence of solutions for the critical fractional Laplacian equation in \({\mathbb{R}}^{N}\). Abstr. Appl. Anal., Art. ID 143741, 10 pp (2014)

  29. Shang, X., Zhang, J.: Ground states for fractional Schrödinger equations with critical growth. Nonlinearity 27, 187–207 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  30. Shang, X.D., Zhang, J.H.: Concentrating solutions of nonlinear fractional Schrödinger equation with potentials. J. Differ. Equ. 258, 1106–1128 (2015)

    Article  MATH  Google Scholar 

  31. Squassina, M.: Soliton dynamics for the nonlinear Schrödinger equation with magnetic field. Manuscr. Math. 130, 461–494 (2009)

    Article  MATH  Google Scholar 

  32. Squassina, M., Volzone, B.: Bourgain–Brezis–Mironescu formula for magnetic operators. C. R. Math. 354, 825–831 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  33. Vázquez, J.L.: Nonlinear diffusion with fractional Laplacian operators. Nonlinear Partial Differ. Equ. Abel Symposia 7, 271–298 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  34. Zhang, X., Zhang, B.L., Repovš, D.: Existence and symmetry of solutions for critical fractional Schrödinger equations with bounded potentials. Nonlinear Anal. 142, 48–68 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  35. Zhang, X., Zhang, B.L., Xiang, M.Q.: Ground states for fractional Schrödinger equations involving a critical nonlinearity. Adv. Nonlinear Anal. 5, 293–314 (2016)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Squassina.

Additional information

The second author is member of Gruppo Nazionale per l’Analisi Ma-te-ma-ti-ca, la Probabilità e le loro Applicazioni (GNAMPA) of the Istituto Nazionale di Alta Matematica (INdAM). Zhang Binlin was supported by the Natural Science Foundation of Hei-longjiang Province of China (No. A201306), the Research Foundation of Hei-longjiang Educational Committee (No. 12541667) and the Doctoral Research Foundation of Heilongjiang Institute of Technology (No. 2013BJ15). Zhang Xia was supported by the National Science Foundation of China (No. 11601103, No. 11671111).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Binlin, Z., Squassina, M. & Xia, Z. Fractional NLS equations with magnetic field, critical frequency and critical growth. manuscripta math. 155, 115–140 (2018). https://doi.org/10.1007/s00229-017-0937-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-017-0937-4

Mathematics Subject Classification

Navigation