Skip to main content
Log in

From almost (para)-complex structures to affine structures on Lie groups

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Let \(G=H\ltimes K\) denote a semidirect product Lie group with Lie algebra \(\mathfrak {g} =\mathfrak {h} \oplus \mathfrak {k} \), where \(\mathfrak {k} \) is an ideal and \(\mathfrak {h} \) is a subalgebra of the same dimension as \(\mathfrak {k} \). There exist some natural split isomorphisms S with \(S^2=\pm {\text {Id}}\) on \(\mathfrak {g} \): given any linear isomorphism \(j:\mathfrak {h} \rightarrow \mathfrak {k} \), we get the almost complex structure \(J(x,v)=(-j^{-1}v, jx)\) and the almost paracomplex structure \(E(x,v)=(j^{-1}v, jx)\). In this work we show that the integrability of the structures J and E above is equivalent to the existence of a left-invariant torsion-free connection \(\nabla \) on G such that \(\nabla J=0=\nabla E\) and also to the existence of an affine structure on H. Applications include complex, paracomplex and symplectic geometries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrada, A., Barberis, M.L., Dotti, I.: Abelian hermitian geometry. Diff. Geom. Appl. 30, 509–519 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andrada, A., Salamon, S.: Complex product structures on Lie algebras. Forum Math. 17, 261–295 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Auslander, L.: Simply transitive groups of affine motions. Am. J. Math. 99, 809–826 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  4. Auslander, L., Markus, L.: Holonomy of flat affinely connected manifolds. Ann. Math. 62, 139–151 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  5. Barberis, M.L., Dotti, I.: Complex structures on affine motion groups. Q. J. Math. 55, 375–389 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  6. Blažić, N., Vukmirović, S.: Four-dimensional Lie algebras with a para-hypercomplex structure Rocky Mount. J. Math. 40, 1391–1439 (2010)

    MathSciNet  MATH  Google Scholar 

  7. Burde, D.: Affine structures on nilmanifolds. Int. J. Math. 7, 599–616 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  8. Burde, D.: Simple left-symmetric algebras with solvable Lie algebra. Manuscr. Math. 95, 397–411 (1998)

    MathSciNet  MATH  Google Scholar 

  9. Burde, D.: Left-symmetric algebras, or pre-Lie algebras in geometry and physics. Cent. Eur. J. Math. 4, 323–357 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Calvaruso, G., Fino, A.: Complex and paracomplex structures on homogeneous pseudo-Riemannian four-manifolds. Int. J. Math. 24, 1250130 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  11. Campoamor Stursberg, R., Cardoso, I.E., Ovando, G.P.: Extending invariant complex structures. Int. J. Math. 26, 1550096 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Campoamor Stursberg, R., Ovando, G.P.: Invariant complex structures on tangent and cotangent Lie groups of dimensions six. Osaka J. Math. 49, 489–513 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Chu, B.: Symplectic homogeneous spaces. Trans. Am. Math. Soc. 197, 145–159 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  14. Cleyton, R., Ovando, G., Poon, Y.S.: Weak mirror symmetry of complex symplectic algebras. J. Geom. Phys. 61, 1553–1563 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Cruceanu, V., Fortuny, P., Gadea, P.M.: A survey on paracomplex geometry. Rocky Mt. J. Math. 26, 83–115 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  16. Dekimpe, K., Malfait, W.: Affine structures on a class of virtually nilpotent groups. Topol. Appl. 73, 97–119 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  17. de Andres, L.C., Barberis, M.L., Dotti, I., Fernandez, M.: Hermitian structures on cotangent bundles of four dimensional solvable Lie groups. Osaka Math. J. 44, 765–793 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Jacobson, N.: A note on automorphisms and derivations of Lie algebras. Proc. Am. Math. Soc. 6, 281–283 (1955)

    Article  MathSciNet  MATH  Google Scholar 

  19. Milnor, J.: On fundamental groups of complete affinely flat manifolds. Adv. Math. 25, 178–187 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  20. Oubiña, J.A.: On almost complex structures on the semidirect product of almost contact Lie algebras. Tensor (N.S.) 41, 111–115 (1984)

    MathSciNet  MATH  Google Scholar 

  21. Segal, D.: The structure of complete left-symmetric algebras. Math. Ann. 293, 569–578 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  22. Vaisman, I.: Reduction and submanifolds of generalized complex manifolds. Diff. Geom. Appl. 25, 147–166 (2007)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gabriela P. Ovando.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Calvaruso, G., Ovando, G.P. From almost (para)-complex structures to affine structures on Lie groups. manuscripta math. 155, 89–113 (2018). https://doi.org/10.1007/s00229-017-0934-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-017-0934-7

Mathematics Subject Classifcation

Navigation