Skip to main content
Log in

Rational approximation to values of G-functions, and their expansions in integer bases

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

An Erratum to this article was published on 03 January 2018

This article has been updated

Abstract

We prove a general effective result concerning approximation of irrational values at rational points a / b of any G-function F with rational Taylor coefficients by fractions of the form \(n/(B\cdot b^m)\), where the integer B is fixed. As a corollary, we show that if F is not in \(\mathbb Q(z)\), for any \(\varepsilon >0\) and any b and m large enough with respect to a, \(\varepsilon \) and F, then \(|F(a/b)-n/b^m|\ge 1/b^{m(1+\varepsilon )}\) and \(F(a/b)\notin \mathbb Q\). This enables us to obtain a new and effective result on repetition of patterns in the b-ary expansion of \(F(a/b^s)\) for any \(b\ge 2\). In particular, defining \(\mathcal {N}(n)\) as the number of consecutive equal digits in the b-ary expansion of \(F(a/b^s)\) starting from the n-th digit, we prove that \(\limsup _n \mathcal {N}(n)/n\le \varepsilon \) provided the integer \(s\ge 1\) is such that \(b^s\) is large enough with respect to a, \(\varepsilon > 0\) and F. This improves over the previous bound \(1+\varepsilon \), that can be deduced from the work of Zudilin. Our crucial ingredient is the use of non-diagonal simultaneous Padé type approximants for any given family of G-functions solution of a differential system, in a construction à la Chudnovsky-André. This idea was introduced by Beukers in the particular case of the function \((1-z)^\alpha \) in his study of the generalized Ramanujan–Nagell equation, and we use it in its full generality here. In contrast with the classical Diophantine “competition” between E-functions and G-functions, similar results are still not known for a single transcendental value of an E-function at a rational point, not even for the exponential function.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Change history

  • 03 January 2018

    In this note we correct a mistake in the proof of the main result of [1], pointed out to us by Dimitri Le Meur.

References

  1. Adamczewski, B.: On the expansion of some exponential periods in an integer base. Math. Ann. 346, 107–116 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Adamczewski, B., Bugeaud, Y.: On the complexity of algebraic numbers I: expansions in integer bases. Ann. Math. 165(2), 547–565 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Amou, M., Bugeaud, Y.: Exponents of Diophantine approximation and expansions in integer bases. J. Lond. Math. Soc. 81, 297–316 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. André, Y.: G-functions and Geometry, Aspects of Mathematics, vol. E13. Friedr. Vieweg & Sohn, Braunschweig (1989)

    Book  Google Scholar 

  5. André, Y.: \(G\)-fonctions et transcendance. J. Reine Angew. Math. 476, 95–125 (1996)

    MathSciNet  MATH  Google Scholar 

  6. Bailey, D.H., Borwein, J.M., Crandall, R., Pomerance, C.: On the binary expansions of algebraic numbers. J. Théor. Nombres Bordx. 16(3), 487–518 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bauer, M., Bennett, M.: Application of the hypergeometric method to the generalized Ramanujan–Nagell equation. Ramanujan J. 6, 209–270 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bennett, M., Bugeaud, Y.: Effective results for restricted rational approximation to quadratic irrationals. Acta Arith. 155, 259–269 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bertrand, D., Beukers, F.: Equations différentielles linéaires et majorations de multiplicités. Ann. Sci. École. Norm. Super. 18, 181–192 (1985)

    Article  MATH  Google Scholar 

  10. Beukers, F.: On the generalized Ramanujan–Nagell equation I. Acta Arith. 38(4), 389–410 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  11. Beukers, F.: A refined version of the Siegel-Shidlovskii theorem. Ann. Math. 163(1), 369–379 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  12. Bombieri, E.: On G-functions, Recent Progress in Analytic Number Theory, vol. 2. Academic Press, New York (1981)

    Google Scholar 

  13. Bugeaud, Y., Kim, D.H.: A new complexity function, repetitions in Sturmian words, and irrationality exponents of Sturmian numbers, (2015). arXiv:1510.00279 [math.NT]

  14. Bugeaud, Y., Kim, D.H.: On the \(b\)-ary expansions of \(\log (1+1/a)\) and \(e\). Ann. Sc. Norm. Super. Pisa, (2015). arXiv:1510.00282 [math.NT]

  15. Chudnovsky, G.V.: Rational and Padé approximations to solutions of linear differential equations and the monodromy theory. In: Iagolnitzer, D. (ed.) Complex Analysis, Microlocal Calculus and Relativistic Quantum Theory. Lecture Notes in Physics, vol. 126, pp. 136–169. Springer, Berlin, Heidelberg (1980)

  16. Chudnovsky, G.V.: On applications of diophantine approximations. Proc. Natl. Acad. Sci. USA 81, 7261–7265 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  17. Chudnovsky, D.V., Chudnovsky, G.V.: Applications of Padé approximations to Diophantine inequalities in values of G-functions, In: Number Theory (New York, 1983/84). Lecture Notes in Math, vol. 1135. Springer, Berlin (1985)

  18. Fischler, S., Rivoal, T.: On the values of \(G\)-functions. Commentarii Math. Helv. 29(2), 313–341 (2014)

    Article  MATH  Google Scholar 

  19. Galochkin, A.I.: Lower bounds of polynomials in the values of a certain class of analytic functions. Mat. Sb. 95(137), 396–417 (1974). (in Russian)

    MathSciNet  Google Scholar 

  20. Ridout, D.: Rational approximations to algebraic numbers. Mathematika 4, 125–131 (1957)

    Article  MathSciNet  MATH  Google Scholar 

  21. Rivoal, T.: Convergents and irrationality measures of logarithms. Rev. Mat. Iberoam. 23(3), 931–952 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rivoal, T.: On the bits couting function of real numbers. J. Aust. Math. Soc. 85, 95–111 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  23. Shidlovsky, A.B.: Transcendental numbers. Translated from Russian by Koblitz, N., With a foreword by W. Dale Brownawell. de Gruyter Studies in Mathematics, vol. 12. Walter de Gruyter & Co., Berlin (1989)

  24. Siegel, C.: Über einige Anwendungen diophantischer Approximationen. vol. 1 S. Abhandlungen Akad., Berlin (1929)

  25. Zudilin, W.: On rational approximations of values of a certain class of entire functions. Sb. Math. 186(4), 555–590 (1995); translated from the Russian version Mat. Sb. 186(4), 89–124 (1995)

  26. Zudilin, W.: On a measure of irrationality for values of \(G\)-functions, Izv. Math. 60(1), 91–118 (1996); translated from the Russian version Izv. Ross. Akad. Nauk Ser. Mat. 60(1), 87–114 (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Fischler.

Additional information

An erratum to this article is available at https://doi.org/10.1007/s00229-017-0988-6.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fischler, S., Rivoal, T. Rational approximation to values of G-functions, and their expansions in integer bases. manuscripta math. 155, 579–595 (2018). https://doi.org/10.1007/s00229-017-0933-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-017-0933-8

Mathematics Subject Classification

Navigation