Skip to main content
Log in

Holomorphic geometric structures on Kähler–Einstein manifolds

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

We prove that the compact Kähler manifolds with \(c_{1} \ge 0\) that admit holomorphic parabolic geometries are the flat bundles of rational homogeneous varieties over complex tori. We also prove that the compact Kähler manifolds with \(c_{1} \ge 0\) that admit holomorphic cominiscule geometries are the locally Hermitian symmetric varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aubin, T.: Équations du type Monge-Ampère sur les variétés kählériennes compactes. Bull. Sci. Math. (2) 102(1), 63–95 (1978)

    MathSciNet  MATH  Google Scholar 

  2. Baston, R.J., Eastwood, M.G.: The Penrose Transform, Oxford Mathematical Monographs. The Clarendon Press Oxford University Press, New York. Its interaction with representation theory, Oxford Science Publications (1989)

  3. Beauville, A.: Complex manifolds with split tangent bundle. Complex Analysis and Algebraic Geometry, de Gruyter, Berlin, pp. 61–70(2000)

  4. Biswas, I., McKay, B.: Holomorphic Cartan Geometries and Rational Curves, ArXiv e-prints (2010)

  5. Borel, A.: Linear Algebraic Groups, 2nd edn. Springer, New York (1991). Graduate Texts in Mathematics

    Book  MATH  Google Scholar 

  6. Brunella, M., Pereira, J.V., Touzet, F.: Kähler manifolds with split tangent bundle. Bull. Soc. Math. 134(2), 241–252 (2006)

    MathSciNet  MATH  Google Scholar 

  7. David, M.J., Diemer, T.: Differential invariants and curved Bernstein–Gelfand–Gelfand sequences: calderbank. J. Reine Angew. Math. 537, 67–103 (2001)

    MathSciNet  MATH  Google Scholar 

  8. Campana, F., Demailly, J.-P., Peternell, T.: Rationally Connected Manifolds and Semipositivity of the Ricci curvature, ArXiv e-prints (2012)

  9. Čap, A., Schichl, H.: Parabolic geometries and canonical Cartan connections. Hokkaido Math. J. 29(3), 453–505 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Čap, A., Slovák, J.: Parabolic geometries. I, Mathematical Surveys and Monographs, vol. 154. American Mathematical Society, Providence, RI, Background and general theory (2009)

  11. Catanese, F., José Di Scala, A.: A Characterization of Varieties Whose Universal Cover is a Bounded Symmetric Domain Without Ball Factors, ArXiv e-prints (2013)

  12. Chen, B.-Y., Ogiue, K.: Some characterizations of complex space forms in terms of Chern classes. Q. J. Math. 26, 459–464 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  13. de Georges, R.: Sur la reductibilité d’un espace de Riemann. Comment. Math. Helv. 26, 328–344 (1952)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fulton, W., Harris, J.: Representation Theory, Graduate Texts in Mathematics. Springer, New York (1991). A first course, Readings in Mathematics

    Google Scholar 

  15. Goldman, W.M.: Locally homogeneous geometric manifolds. Proceedings of the International Congress of Mathematicians (Hyderabad) (Rajendra Bhatia, ed.), vol. 2, International Congress of Mathematicians, Hindawi, pp. 717–744 (2010)

  16. Goncharov, A.B.: Generalized conformal structures on manifolds. Selecta Math. Soviet. 6(4), 307–340, Selected translations (1987)

  17. Gunning, R.C.: On Uniformization of Complex Manifolds: The Role of Connections, Mathematical Notes, vol. 22. Princeton University Press, Princeton, NJ (1978)

    MATH  Google Scholar 

  18. Helgason, S.: Differential Geometry, Lie Groups, and Symmetric Spaces, Graduate Studies in Mathematics, vol. 34, American Mathematical Society, Providence, RI, 2001, Corrected reprint of the 1978 original (1978)

  19. Höring, A.: Uniruled varieties with split tangent bundle. Math. Z. 256(3), 465–479 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Jahnke, P., Radloff, I.: Splitting submanifolds of families of fake elliptic curves. Sci. China Math. 54(5), 949–958 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  21. Joyce, D.D.: Riemannian Holonomy Groups and Calibrated Geometry, Oxford Graduate Texts in Mathematics, vol. 12. Oxford University Press, Oxford (2007)

    Google Scholar 

  22. Klingler, B.: Structures affines et projectives sur les surfaces complexes. Ann. Inst. Fourier (Grenoble) 48(2), 441–477 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  23. Klingler, B.: Un théorème de rigidité non-métrique pour les variétés localement symétriques hermitiennes. Comment. Math. Helv. 76(2), 200–217 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  24. Knapp, A.W.: Lie Groups Beyond an Introduction, 2nd ed., Progress in Mathematics, vol. 140. Birkhäuser Boston Inc., Boston, MA (2002)

  25. Kobayashi, S.: First Chern class and holomorphic tensor fields. Nagoya Math. J. 77, 5–11 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kobayashi, S., Horst, C.: Topics in Complex Differential Geometry, Complex Differential Geometry, DMV Sem, vol. 3. Birkhäuser, Basel (1983)

    MATH  Google Scholar 

  27. Kobayashi, S.: Nagano, Tadashi: on projective connections. J. Math. Mech. 13, 215–235 (1964)

    MathSciNet  Google Scholar 

  28. Kobayashi, S., Ochiai, T.: Holomorphic projective structures on compact complex surfaces. Math. Ann. 249(1), 75–94 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  29. Kobayashi, S., Ochiai, T.: Holomorphic projective structures on compact complex surfaces. II. Math. Ann. 255(4), 519–521 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kobayashi, S., Ochiai, T.: Holomorphic structures modeled after compact Hermitian symmetric spaces. Manifolds and Lie groups (Notre Dame, Ind., 1980), Progr. Math., vol. 14, Birkhäuser Boston, MA, pp. 207–222 (1981)

  31. Kobayashi, S., Ochiai, T.: Holomorphic structures modeled after hyperquadrics. Tôhoku Math. J. (2) 34(4), 587–629 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  32. Landsberg, J.M.: Secant varieties, shadows and the universal Lie algebra: Perspectives on the geometry of rational homogeneous varieties. From 2004 Lectures at Harvard University, to Appear (2005)

  33. Loray, F., Pérez, D.M.: Projective structures and projective bundles over compact Riemann surfaces. Astérisque 323, 223–252 (2009)

    MathSciNet  MATH  Google Scholar 

  34. McKay, B.: Characteristic Forms of Complex Cartan Geometries. arXiv:0704.2555 [math]. April (2007)

  35. McKay, B.: Holomorphic Cartan geometries on uniruled surfaces. C. R. Math. Acad. Sci. Paris 349(15–16), 893–896 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  36. McKay, B.: Holomorphic parabolic geometries and Calabi–Yau manifolds, SIGMA Symmetry Integrability Geom. Methods Appl. 7, Paper 090, 11 (2011)

  37. Molzon, R., Mortensen, K.P.: The Schwarzian derivative for maps between manifolds with complex projective connections. Trans. Am. Math. Soc. 348(8), 3015–3036 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  38. Raghunathan, M.S.: Discrete Subgroups of Lie Groups. Springer, New York, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 68 (1972)

  39. Serre, J.-P.: Complex semisimple Lie algebras, Springer Monographs in Mathematics. Springer, Berlin. Translated from the French by G. A. Jones, Reprint of the 1987 edition (2001)

  40. Sharpe, R.W.: An introduction to Cartan Geometries, Proceedings of the 21st Winter School “Geometry and Physics” (Srní, 2001), No. 69, pp. 61–75 (2002)

  41. Yano, K., Bochner, S.: Curvature and Betti Numbers, Annals of Mathematics Studies, vol. 32. Princeton University Press, Princeton (1953)

    MATH  Google Scholar 

  42. Yau, S.T.: Calabi’s conjecture and some new results in algebraic geometry. Proc. Nat. Acad. Sci. USA 74(5), 1798–1799 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  43. Yau, S.T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge–Ampère equation. I. Commun. Pure Appl. Math. 31(3), 339–411 (1978)

    Article  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin McKay.

Additional information

This publication has emanated from activity conducted with the financial support of Science Foundation Ireland under the International Strategic Cooperation Award Grant Number SFI/13/ISCA/2844.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

McKay, B. Holomorphic geometric structures on Kähler–Einstein manifolds. manuscripta math. 153, 1–34 (2017). https://doi.org/10.1007/s00229-016-0873-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-016-0873-8

Mathematics Subject Classification

Navigation