Advertisement

manuscripta mathematica

, Volume 152, Issue 1–2, pp 241–245 | Cite as

Genericity under parahoric restriction

  • Manish MishraEmail author
  • Mirko Rösner
Article

Abstract

We study the preservation of genericity under parahoric restriction of depth zero representations.

Mathematics Subject Classification

22E50 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    DeBacker, S., Reeder, M.: Depth-zero supercuspidal \(L\)-packets and their stability. Ann. Math. (2) 169(3), 795–901 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Moy, A., Prasad, G.: Jacquet functors and unrefined minimal K-types. Commentarii Mathematici Helvetici 71(1), 98–121 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Roberts, B. and Schmidt, R.: Local Newforms for \(GSp(4)\), volume 1918 of Lecture Notes in Mathematics, 1 edn. Springer, Berlin (2007)Google Scholar
  4. 4.
    Rodier, F.: Whittaker models for admissible representations of reductive \(p\)-adic split groups. In: Harmonic Analysis on Homogeneous Spaces (Proc. Sympos. Pure Math., Vol. XXVI, Williams Coll., Williamstown, Mass., 1972), pp. 425–430. Am. Math. Soc., Providence, R.I. (1973)Google Scholar
  5. 5.
    Rösner, M.: Parahoric Restriction for \(\rm GSp(4)\) and the Inner Cohomology of Siegel Modular Threefolds. PhD thesis, Ruprecht-Karls-Universität Heidelberg, (2016)Google Scholar
  6. 6.
    Vignéras, M.-F.: Irreducible Modular Representations of a reductive \(p\)-adic Group and Simple Modules for Hecke Algebras. In: Casacuberta, C. et al. (ed.) European Congress of Mathematics, Barcelona, volume 201 of Progress in Mathematics, pp. 117–133. Birkhäuser, (2001)Google Scholar
  7. 7.
    Vignéras, M.-F.: Schur algebras of reductive p-adic groups. I. Duke Math J 116(1), 35–75 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Yu, J.-K.: Construction of tame supercuspidal representations. J. Am. Math. Soc. 14(3), 579–622 (2001). (electronic)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.University of HeidelbergHeidelbergGermany

Personalised recommendations