Advertisement

manuscripta mathematica

, Volume 152, Issue 1–2, pp 153–166 | Cite as

Shuffle product of finite multiple polylogarithms

  • Masataka OnoEmail author
  • Shuji Yamamoto
Article

Abstract

In this paper, we define a finite sum analogue of multiple polylogarithms inspired by the work of Kaneko and Zagier (in the article “Finite multiple zeta values” in preparation) and prove that they satisfy a certain analogue of the shuffle relation. Our result is obtained by using a certain partial fraction decomposition which is an idea due to Komori et al. (Math Z 268:993–1011, 2011). As a corollary, we give an algebraic interpretation of our shuffle product.

Mathematics Subject Classification:

Primary 11M32 Secondary 05A19 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Notes

Acknowledgments

The authors would like to thank the members of the KiPAS-AGNT group for giving us a great environment to study and reading the manuscript carefully, and members of the Department of Mathematics at Keio University for their hospitality. This research was supported in part by JSPS KAKENHI 21674001, 26247004.

References

  1. 1.
    Borwein, M.J., Bradley, M.D., Broadhurst, D.J., Lisoněk, P.: Special values of multiple polylogarithms. Trans. Am. Math. Soc. 353(3), 907–941 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Besser, A.: Finite and \(p\)-adic polylogarithms. Compos. Math. 130, 215–223 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Broadhurst, D.J., Kreimer, D.: Association of multiple zeta values with positive knots via Feynman diagrams up to 9 loops. Phys. Lett. B 393, 403–412 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Brown, F.: Mixed Tate motives over \({\mathbb{Z}}\). Ann. Math. 175(2), 949–976 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Deligne, P., Goncharov, A.: Groupes fondamentaux motiviques de Tate mixte. Ann. Sci. École Norm. Sup. 38(4), 1–56 (2005)MathSciNetGoogle Scholar
  6. 6.
    Drinfel’d, V.G.: On quasitriangular quasi-Hopf algebras and a group closely connected with Gal(\(\overline{\mathbb{Q}}/{\mathbb{Q}}\)). Leningrad Math. J. 2(4), 829–860 (1991)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Elbaz-Vincent, P., Gangl, H.: On poly(ana)logs I. Compos. Math. 130, 161–214 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Goncharov, A.B.: Multiple polylogarithms, cyclotomy and modular complexes. Math. Res. Lett. 5(4), 497–516 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Komori, Y., Matsumoto, K., Tsumura, H.: Shuffle products of multiple zeta values and partial fraction decompositions of zeta-functions of root systems. Math. Z. 268, 993–1011 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Kontsevich, M.: The 1+1/2 logarithm, appendix to [EG]. Compos. Math. 130, 211–214 (2002)Google Scholar
  11. 11.
    Le, T.Q.T., Murakami, J.: Kontsevich’s integral for the Homfly polynomial and relations between values of the multiple zeta functions. Topol. Appl. 62, 193–206 (1995)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Minh, H.N., Petitot, M., Van Der Hoeven, J.: Shuffle algebra and polylogarithms. Discrete Math. 225, 217–230 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Racinet, G.: Doubles mélanges des polylogarithmes multiples aux racines de l’unité. Publ. Math. IHES 95, 185–231 (2002)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Terasoma, T.: Mixed Tate motives and multiple zeta values. Invent. Math. 149, 339–369 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Weil, A.: Elliptic Functions According to Eisenstein and Kronecker. Springer, Berlin, Heidelberg, New York (1976)CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsKeio UniversityYokohamaJapan

Personalised recommendations