Advertisement

manuscripta mathematica

, Volume 151, Issue 3–4, pp 549–565 | Cite as

Nonexcellent finite field extensions of 2-primary degree

  • A. S. SivatskiEmail author
Article
  • 42 Downloads

Abstract

Let \(k_0\) be a field of characteristic distinct from 2, \(l_0{/}k_0\) a finite field extension of degree \(2^m\), \(m\ge 2\). We prove that there exists a field extension \(K{/}k_0\) linearly disjoint with \(l_0/k_0\) such that the extension \(l_0K{/}K\) is nonexcellent. The crucial point is a construction of in some sense nonstandard elements in \(H^3(K,\mathbb {Z}{/}2\mathbb {Z})\). We apply this construction as well for investigation of the group \({F^*}^2N_{L{/}F}L^*\), where L / F is a \(\mathbb {Z}{/}4\mathbb {Z}\times \mathbb {Z}{/}2\mathbb {Z}\)-Galois extension. More precisely, let \(F\subset F_i\subset L\) \((1\le i\le 3)\) be the three intermediate quadratic extensions of F, and \(N_i(F)=N_{F_i{/}F}F_i^*\). We show that the quotient group \({N_1(F)\cap N_2(F)\cap N_3(F)\over {F^*}^2N_{L/F}L^*}\) can be arbitrarily large.

Mathematics Subject Classification

11E04 11E81 16H05 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Arason, J.K.: Cohomologische invarianten quadratischer Formen. J. Algebra 36, 448–491 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Elman, R., Karpenko, N.A., Merkurjev, A.S.: The Algebraic and Geometric Theory of Quadratic Forms. American Mathematical Society, Providence (2008)CrossRefzbMATHGoogle Scholar
  3. 3.
    Elman, R., Lam, T.Y.: Quadratic forms under algebraic extensions. Math. Ann. 219, 21–42 (1976)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Elman, R., Lam, T.Y., Tignol, J.-P., Wadsworth, A.R.: Witt rings and Brauer groups under multiquadratic extensions. I. Am. J. Math. 105, 1119–1170 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Gille, P., Szamuely, T.: Central Simple Algebras and Galois Cohomology. Cambridge Studies in Advanced Mathematics, vol. 101. Cambridge University Press, Cambridge (2006)Google Scholar
  6. 6.
    Kahn, B.: Formes quadratiques sur un corps. AMS, Providence (2009)Google Scholar
  7. 7.
    Lam, T.Y.: Introduction to Quadratic Forms Over Fields. Graduate Studies in Mathematics, vol. 67. American Mathematical Society, Providence, RI (2005)Google Scholar
  8. 8.
    Lichtembaum, S.: Duality theorems for curves over \(p\)-adic fields. Invent. Math. 7, 120–136 (1969)MathSciNetCrossRefGoogle Scholar
  9. 9.
    Lam, T.Y., Leep, D.B., Tignol, J.-P.: Biquaternion algebras and quartic extensions. Pub. Math. I.H.E.S. 77, 63–102 (1993)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Merkurjev, A.S.: Simple algebras and quadratic forms. Sov. Math. Docl. 38, 215–221 (1992)MathSciNetGoogle Scholar
  11. 11.
    Merkurjev, A.S., Suslin, A.A.: \(K\)-cohomology of Severi-Brauer varieties and the norm residue homomorphism. Math. USSR Izv. 21, 307–340 (1983)CrossRefzbMATHGoogle Scholar
  12. 12.
    Schofield, A., Van Den Bergh, M.: The index of a Brauer class of a Brauer-Severi variety. Trans. Am. Math. Soc. 333(2), 729–739 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Sivatski, A.S.: Nonexcellence of multiquadratic field extensions. J. Algebra 275(2), 859–866 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Sivatski, A.S.: On indecomposable algebras of exponent 2. Isr. J. Math. 164, 365–379 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Sivatski, A.S.: Representation of polynomials as products of two values of a quadratic form. Isr. J. Math. 186, 273–284 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Tignol, J.-P.: Corps à involution neutralisés par une extension abélienne élémentaire. Springer Lecture Notes in Math. 844, 1–34 (1981)Google Scholar
  17. 17.
    Wadsworth, A.R.: Similarity of quadratic forms and isomorphism of their function fields. Trans. Amer. Math. Soc. 208, 352–358 (1975)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Departamento de MatemáticaUniversidade Federal do CearáFortalezaBrazil

Personalised recommendations