Skip to main content
Log in

Tropical Hopf manifolds and contracting germs

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Classical Hopf manifolds are compact complex manifolds whose universal covering is \(\mathbb {C}^d \backslash \{0\}\). We investigate the tropical analogues of Hopf manifolds, and relate their geometry to tropical contracting germs. To do this we develop a procedure called monomialization which transforms non-degenerate tropical germs into morphisms, up to tropical modification. A link is provided between tropical Hopf manifolds and the analytification of Hopf manifolds over a non-archimedean field. We conclude by computing the tropical Picard group and (pq)-homology groups.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Abate, M.: The residual index and the dynamics of holomorphic maps tangent to the identity. Duke Math. J. 107(1), 173–207 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  2. Akian, M., Bapat, R., Gaubert, S.: Min-plus methods in eigenvalue perturbation theory and generalised Lidskii–Vishik–Ljusternik theorem (2006). Preprint http://arxiv.org/abs/math/0402090

  3. Abramovich, D., Caporaso, L., Payne, S.: The tropicalization of the moduli space of curves. Ann. Sci. Éc. Norm. Supér. (4) 48(4), 765–809 (2015)

    MathSciNet  MATH  Google Scholar 

  4. Abate, M., Tovena, F.: Formal normal forms for holomorphic maps tangent to the identity. Discrete Contin. Dyn. Syst. (suppl.), 1–10 (2005)

  5. Buff, X., Epstein, A.L., Koch, S.: Böttcher coordinates. Indiana Univ. Math. J. 61(5), 1765–1799 (2012)

    Article  MATH  Google Scholar 

  6. Berkovich, V.G.: Spectral theory and analytic geometry over non-Archimedean fields. In: Volume 33 of Mathematical Surveys and Monographs. American Mathematical Society, Providence, RI (1990)

  7. Berteloot, F.: Méthodes de changement d’échelles en analyse complexe. Ann. Fac. Sci. Toulouse Math. (6) 15(3), 427–483 (2006)

    Article  MathSciNet  Google Scholar 

  8. Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact complex surfaces, volume 4 of Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A. Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], second edition. Springer, Berlin (2004)

  9. Brugallé, E., Itenberg, I., Mikhalkin, G., Shaw, K.: Brief introduction to tropical geometry. In: Proceedings of the Gökova Geometry-Topology Conference 2014, pp. 1–74 (2015)

  10. Bogart, T., Katz, E.: Obstructions to lifting tropical curves in surfaces in 3-space. SIAM J. Discrete Math. 26(3), 1050–1067 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Brugallé, E., Shaw, K.: Obstructions to approximating tropical curves in surfaces via intersection theory. Can. J. Math. 67(3), 527–572 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Cuninghame-Green, R.A.: The characteristic maxpolynomial of a matrix. J. Math. Anal. Appl. 95(1), 110–116 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  13. Cueto, M.A., Markwig, H.: How to repair tropicalizations of plane curves using modifications (2014). Preprint http://arxiv.org/abs/1409.7430

  14. Dabrowski, K.: Moduli spaces for Hopf surfaces. Math. Ann. 259(2), 201–225 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  15. Favre, C.: Classification of 2-dimensional contracting rigid germs and Kato surfaces. I. J. Math. Pures Appl. (9) 79(5), 475–514 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Favre, C., Jonsson, M.: The valuative tree. In: Volume 1853 of Lecture Notes in Mathematics. Springer, Berlin (2004)

  17. Favre, C., Jonsson, M.: Eigenvaluations. Ann. Sci. École Norm. Sup. (4) 40(2), 309–349 (2007)

    MathSciNet  MATH  Google Scholar 

  18. Favre, C., Jonsson, M.: Dynamical compactifications of \({\bf C}^2\). Ann. Math. (2) 173(1), 211–248 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  19. Friedland, S., Milnor, J.: Dynamical properties of plane polynomial automorphisms. Ergod. Theory Dyn. Syst. 9(1), 67–99 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Favre, C., Ruggiero, M.: Normal surface singularities admitting contracting automorphisms. Ann. Fac. Sci. Toulouse Math. (6) 23(4), 797–828 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  21. Gignac, W., Ruggiero, M.: Growth of attraction rates for iterates of a superattracting germ in dimension two. Indiana Univ. Math. J. 63(4), 1195–1234 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gubler, W., Rabinoff, J., Werner, A.: Skeletons and tropicalizations. To appear in Advances in Mathematics (2014). Preprint http://arxiv.org/abs/1404.7044

  23. Gubler, W., Joseph, R., Annette, W.: Tropical skeletons (2015). Preprint http://arxiv.org/abs/1508.01179

  24. Gubler, W.: A guide to tropicalizations. In: Algebraic and Combinatorial Aspects of Tropical Geometry, Volume 589 of Contemp. Math., pp. 125–189. Amer. Math. Soc., Providence, RI (2013)

  25. Heinz, H.: Zur Topologie der komplexen Mannigfaltigkeiten. Studies and Essays Presented to R. Courant on his 60th Birthday, January 8, 1948, pp. 167–185. Interscience Publishers Inc, New York (1948)

  26. Hubbard, J.H., Papadopol, P.: Superattractive fixed points in \({ C}^n\). Indiana Univ. Math. J. 43(1), 321–365 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  27. Herman, M., Yoccoz, J.-C.: Generalizations of some theorems of small divisors to non-Archimedean fields. In: Geometric Dynamics (Rio de Janeiro, 1981), Volume 1007 of Lecture Notes in Math., pp. 408–447. Springer, Berlin (1983)

  28. Itenberg, I., Katzarkov, L., Mikhalkin, G., Zharkov, I.: Tropical homology. arXiv:1604.01838

  29. Ise, M.: On the geometry of Hopf manifolds. Osaka Math. J. 12, 387–402 (1960)

    MathSciNet  MATH  Google Scholar 

  30. Izhakian, Z.: Tropical arithmetic and matrix algebra. Commun. Algebra 37(4), 1445–1468 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Jonsson, M.: Dynamics of Berkovich spaces in low dimensions. In: Berkovich Spaces and Applications, Volume 2119 of Lecture Notes in Math., pp. 205–366. Springer, Cham (2015)

  32. Jenkins, A., Spallone, S.: A \(p\)-adic approach to local analytic dynamics: analytic conjugacy of analytic maps tangent to the identity. Ann. Fac. Sci. Toulouse Math. (6) 18(3), 611–634 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kato, M.: Compact complex manifolds containing “global” spherical shells. I. In: Proceedings of the International Symposium on Algebraic Geometry (Kyoto Univ., Kyoto, 1977), pp. 45–84, Tokyo (1978). Kinokuniya Book Store

  34. Kato, M.: Some remarks on subvarieties of Hopf manifolds. Tokyo J. Math. 2(1), 47–61 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  35. Lindahl, K.-O.: On Siegel’s linearization theorem for fields of prime characteristic. Nonlinearity 17(3), 745–763 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  36. Mikhalkin, G.: Tropical geometry and its applications. In: International Congress of Mathematicians. Vol. II, pp. 827–852. Eur. Math. Soc., Zürich (2006)

  37. Milnor, J.: Dynamics in One Complex Variable, Volume 160 of Annals of Mathematics Studies, Third Edition. Princeton University Press, Princeton (2006)

  38. Maclagan, D., Sturmfels, B.: Introduction to Tropical Geometry. Volume 161 of Graduate Studies in Mathematics, American Mathematical Society, Providence, RI (2015)

  39. Mikhalkin, G., Zharkov, I.: Tropical eigenwave and intermediate jacobians. In: Homological Mirror Symmetry and Tropical Geometry, Volume 15 of Lecture Notes of the Unione Matematica Italiana, pp. 309–349 (2014)

  40. Osserman, B., Payne, S.: Lifting tropical intersections. Doc. Math. 18, 121–175 (2013)

    MathSciNet  MATH  Google Scholar 

  41. Payne, S.: Analytification is the limit of all tropicalizations. Math. Res. Lett. 16(3), 543–556 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rosay, J.-P., Rudin, W.: Holomorphic maps from \({ C}^n\) to \({ C}^n\). Trans. Am. Math. Soc. 310(1), 47–86 (1988)

    MATH  Google Scholar 

  43. Ruggiero, M.: Contracting rigid germs in higher dimensions. Ann. Inst. Fourier (Grenoble) 63(5), 1913–1950 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  44. Ruggiero, M.: Classification of one-dimensional superattracting germs in positive characteristic. Ergodic Theory Dyn. Syst. 35(7), 2242–2268 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  45. Shaw, K.: A tropical intersection product in matroidal fans. SIAM J. Discrete Math. 27(1), 459–491 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  46. Shaw, K.: Tropical surfaces (2015). Preprint http://arxiv.org/abs/1506.07407

  47. Speyer, D.E.: Tropical linear spaces. SIAM J. Discrete Math. 22(4), 1527–1558 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  48. Speyer, D.E.: Parameterizing tropical curves I: curves of genus zero and one. Algebra Number Theory 8(4), 963–998 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  49. Sternberg, S.: Local contractions and a theorem of Poincaré. Am. J. Math. 79, 809–824 (1957)

    Article  MATH  Google Scholar 

  50. Teissier, B.: Amibes non archimédiennes. In: Géométrie Tropicale, pp. 85–114. Ed. Éc. Polytech., Palaiseau (2008)

  51. Voskuil, H.: Non-Archimedean Hopf surfaces. Théor. Nombres Bordeaux (2) 3(2), 405–466 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kristin Shaw.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ruggiero, M., Shaw, K. Tropical Hopf manifolds and contracting germs. manuscripta math. 152, 1–60 (2017). https://doi.org/10.1007/s00229-016-0849-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-016-0849-8

Mathematics Subject Classification:

Navigation