manuscripta mathematica

, Volume 151, Issue 3–4, pp 453–468 | Cite as

Interpolation of geometric structures compatible with a pseudo Riemannian metric

  • Edison Alberto Fernández-Culma
  • Yamile GodoyEmail author
  • Marcos Salvai


Let (M, g) be a pseudo Riemannian manifold. We consider four geometric structures on M compatible with g: two almost complex and two almost product structures satisfying additionally certain integrability conditions. For instance, if r is paracomplex and symmetric with respect to g, then r induces a pseudo Riemannian product structure on M. Sometimes the integrability condition is expressed by the closedness of an associated two-form: if j is almost complex on M and \(\omega (x,y)=g(jx,y)\) is symplectic, then M is almost pseudo Kähler. Now, product, complex and symplectic structures on M are trivial examples of generalized (para)complex structures in the sense of Hitchin. We use the latter in order to define the notion of interpolation of geometric structures compatible with g. We also compute the typical fibers of the twistor bundles of the new structures and give examples for M a Lie group with a left invariant metric.

Mathematics Subject Classification

 22F30 22F50 53B30 53B35 53C15 53C56 53D05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Andrada, A.: Complex product structures on 6-dimensional nilpotent Lie algebras. Forum Math. 20, 285–315 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Apostolov, V., Draghici, T.: The Curvature and the Integrability of Almost Kahler Manifolds: A Survey, Symplectic and Contact Topology: Interactions and Perspectives, Fields Institute Communications, 35. American Mathematical Society, Providence (2003)zbMATHGoogle Scholar
  3. 3.
    de Andrés, L.C., Barberis, M.L., Dotti, I., Fernández, M.: Hermitian structures on cotangent bundles of four dimensional solvable Lie groups. Osaka J. Math. 44, 765–793 (2007)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Borowiec, A., Francaviglia, M., Volovich, I.: Anti-Kählerian manifolds. Differ. Geom. Appl. 12, 281–289 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Courant, T.J.: Dirac manifolds. Trans. Am. Math. Soc. 319, 631–661 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cavalcanti, G.R., Gualtieri, M.: Generalized complex structures on nilmanifolds. J. Symplectic Geom. 2, 393–410 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Crainic, M.: Generalized complex structures and Lie brackets. Bull. Braz. Math. Soc. (N.S.) 42, 559–578 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Cruceanu, V., Fortuny, P., Gadea, P.M.: A survey on paracomplex geometry. Rocky Mountain J. Math. 26, 83–115 (1996)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Etayo, F., Santamaría, R., Trías, U.J.: The geometry of a bi-Lagrangian manifold. Differ. Geom. Appl. 24, 33–59 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gray, A.: Riemannian manifolds with geodesic symmetries of order 3. J. Differ. Geom. 7, 343–369 (1972)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Gualtieri, M.: Generalized complex geometry. Ann. Math. (2) 174, 75–123 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Harvey, F.R.: Spinors and Calibrations, Perspectives in Mathematics 9, 1st edn. Academic, Boston (1990)Google Scholar
  13. 13.
    Harvey, F.R., Lawson Jr., H.B.: Split special Lagrangian geometry. In: Dai, X., Rong, X. (eds.) Metric and Differential Geometry. The Jeff Cheeger Anniversary Volume, Progress in Mathematics 297, vol. 297, pp. 43–89. Springer, Berlin (2012)CrossRefGoogle Scholar
  14. 14.
    Hitchin, N.: Generalized Calabi-Yau manifolds. Q. J. Math. 54, 281–308 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Kowalski, O.: Generalized Symmetric Spaces, Lecture Notes Math. 805, (1980)Google Scholar
  16. 16.
    Oproiu, V., Papaghiuc, N.: Some classes of almost anti-Hermitian structures on the tangent bundle. Mediterr. J. Math. 1, 269–282 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Salamon, S.M.: Complex structures on nilpotent Lie algebras. J. Pure Appl. Algebra 157, 311–333 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Salvai, M.: Generalized geometric structures on complex and symplectic manifolds. Ann. Mat. Pura Appl. 194(4), 1505–1525 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Vaisman, I.: Reduction and submanifolds of generalized complex manifolds. Differ. Geom. Appl. 25, 147–166 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Wade, A.: Dirac structures and paracomplex manifolds. C. R. Math. Acad. Sci. Paris 338, 889–894 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Yano, K.: Differential geometry of complex and almost complex spaces. In: International Series on Monographs in Pure and Applied Mathematics, vol. 49. A Pergamon Press Book, The Macmillan Co., New York, (1965), xii+326 ppGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  • Edison Alberto Fernández-Culma
    • 1
  • Yamile Godoy
    • 1
    Email author
  • Marcos Salvai
    • 1
  1. 1.CIEM-FaMAFConicet - Universidad Nacional de CórdobaCórdobaArgentina

Personalised recommendations