Skip to main content
Log in

Interpolation of geometric structures compatible with a pseudo Riemannian metric

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

Let (M, g) be a pseudo Riemannian manifold. We consider four geometric structures on M compatible with g: two almost complex and two almost product structures satisfying additionally certain integrability conditions. For instance, if r is paracomplex and symmetric with respect to g, then r induces a pseudo Riemannian product structure on M. Sometimes the integrability condition is expressed by the closedness of an associated two-form: if j is almost complex on M and \(\omega (x,y)=g(jx,y)\) is symplectic, then M is almost pseudo Kähler. Now, product, complex and symplectic structures on M are trivial examples of generalized (para)complex structures in the sense of Hitchin. We use the latter in order to define the notion of interpolation of geometric structures compatible with g. We also compute the typical fibers of the twistor bundles of the new structures and give examples for M a Lie group with a left invariant metric.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Andrada, A.: Complex product structures on 6-dimensional nilpotent Lie algebras. Forum Math. 20, 285–315 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  2. Apostolov, V., Draghici, T.: The Curvature and the Integrability of Almost Kahler Manifolds: A Survey, Symplectic and Contact Topology: Interactions and Perspectives, Fields Institute Communications, 35. American Mathematical Society, Providence (2003)

    MATH  Google Scholar 

  3. de Andrés, L.C., Barberis, M.L., Dotti, I., Fernández, M.: Hermitian structures on cotangent bundles of four dimensional solvable Lie groups. Osaka J. Math. 44, 765–793 (2007)

    MathSciNet  MATH  Google Scholar 

  4. Borowiec, A., Francaviglia, M., Volovich, I.: Anti-Kählerian manifolds. Differ. Geom. Appl. 12, 281–289 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Courant, T.J.: Dirac manifolds. Trans. Am. Math. Soc. 319, 631–661 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cavalcanti, G.R., Gualtieri, M.: Generalized complex structures on nilmanifolds. J. Symplectic Geom. 2, 393–410 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Crainic, M.: Generalized complex structures and Lie brackets. Bull. Braz. Math. Soc. (N.S.) 42, 559–578 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cruceanu, V., Fortuny, P., Gadea, P.M.: A survey on paracomplex geometry. Rocky Mountain J. Math. 26, 83–115 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  9. Etayo, F., Santamaría, R., Trías, U.J.: The geometry of a bi-Lagrangian manifold. Differ. Geom. Appl. 24, 33–59 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gray, A.: Riemannian manifolds with geodesic symmetries of order 3. J. Differ. Geom. 7, 343–369 (1972)

    MathSciNet  MATH  Google Scholar 

  11. Gualtieri, M.: Generalized complex geometry. Ann. Math. (2) 174, 75–123 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Harvey, F.R.: Spinors and Calibrations, Perspectives in Mathematics 9, 1st edn. Academic, Boston (1990)

    Google Scholar 

  13. Harvey, F.R., Lawson Jr., H.B.: Split special Lagrangian geometry. In: Dai, X., Rong, X. (eds.) Metric and Differential Geometry. The Jeff Cheeger Anniversary Volume, Progress in Mathematics 297, vol. 297, pp. 43–89. Springer, Berlin (2012)

    Chapter  Google Scholar 

  14. Hitchin, N.: Generalized Calabi-Yau manifolds. Q. J. Math. 54, 281–308 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kowalski, O.: Generalized Symmetric Spaces, Lecture Notes Math. 805, (1980)

  16. Oproiu, V., Papaghiuc, N.: Some classes of almost anti-Hermitian structures on the tangent bundle. Mediterr. J. Math. 1, 269–282 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Salamon, S.M.: Complex structures on nilpotent Lie algebras. J. Pure Appl. Algebra 157, 311–333 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  18. Salvai, M.: Generalized geometric structures on complex and symplectic manifolds. Ann. Mat. Pura Appl. 194(4), 1505–1525 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  19. Vaisman, I.: Reduction and submanifolds of generalized complex manifolds. Differ. Geom. Appl. 25, 147–166 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  20. Wade, A.: Dirac structures and paracomplex manifolds. C. R. Math. Acad. Sci. Paris 338, 889–894 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  21. Yano, K.: Differential geometry of complex and almost complex spaces. In: International Series on Monographs in Pure and Applied Mathematics, vol. 49. A Pergamon Press Book, The Macmillan Co., New York, (1965), xii+326 pp

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yamile Godoy.

Additional information

This work was partially supported by Conicet (PIPs 112-2011-01-00670 and 112-2012-01-00300), Foncyt (PICT 2010 cat 1proyecto 1716) and Secyt Univ. Nac. Córdoba.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fernández-Culma, E.A., Godoy, Y. & Salvai, M. Interpolation of geometric structures compatible with a pseudo Riemannian metric. manuscripta math. 151, 453–468 (2016). https://doi.org/10.1007/s00229-016-0846-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-016-0846-y

Mathematics Subject Classification

Navigation