manuscripta mathematica

, Volume 151, Issue 3–4, pp 305–327 | Cite as

On polarization types of Lagrangian fibrations

  • Benjamin WieneckEmail author


The generic fiber of a Lagrangian fibration on an irreducible holomorphic symplectic manifold is an abelian variety. Associate a polarization type to such Lagrangian fibrations coming from polarizations on a generic fiber. We prove that this polarization type is constant in families of Lagrangian fibrations. Further, we determine the polarization type of \(\text {K}3^{[n]}\)-type fibrations and conjecture that the polarization type should only depend on the deformation type of the total space.

Mathematics Subject Classification

32J27 14D06 32Q15 53D12 53C26 32G13 14D20 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Altman, A., Kleiman, S.: Compactifying the Picard scheme. Adv. Math. 35, 50–112 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Beauville, A.: Variétés kähleriennes dont la premiére classe de chern est nulle. J. Differ. Geom. 18, 755–782 (1984)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Birkenhake, C., Lange, H.: Complex Abelian Varieties, Volume of 302 Second Edition of Grundlehren der mathematischen Wissenschaft. Springer, Berlin (2003)Google Scholar
  4. 4.
    Campana, F.: Isotrivialité de certaines familles kählériennes de variétés non projectives. Math. Z. 252, 147–156 (2006)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Ciliberto, C., van der Geer, G.: On the Jacobian of a hyperplane section of a surface. In: Classification of Irregular Varieties (Trento, 1990). Lecture Notes in Mathematics, vol. 1515, pp. 33–40, Springer, Berlin (1992)Google Scholar
  6. 6.
    D’Souza, C.: Compactification of generalized Jacobians. Proc. Indian Acad. Sci. 88, 419–457 (1979)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Greb, D., Lehn, C.: Base manifolds for Lagrangian fibrations on hyperkähler manifolds. Int. Math. Res. Not. 19, 5483–5487 (2014)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Gross, M., Huybrechts, D., Joyce, D.: Manifolds and Related Geometries. Springer, Berlin (2003)CrossRefzbMATHGoogle Scholar
  9. 9.
    Huybrechts, D.: The Kähler cone of a compact hyperkähler manifold. Math. Ann. 326, 499–513 (2003)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Huybrechts, D., Lehn, M.: The Geometry of Moduli Spaces of Sheaves, 2nd edn. Cambridge University Press, Cambridge (2010)CrossRefzbMATHGoogle Scholar
  11. 11.
    Hwang, J.-M.: Base manifolds for fibrations of projective irreducible symplectic manifolds. Invent. Math. 174(3), 625–644 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Hwang, J.-M., Oguiso, K.: Characteristic foliation on the discriminantal hypersurface of a holomorphic Lagrangian fibration. Am. J. Math. 131, 981–1007 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Lazarsfeld, R.: Positivity in Algebraic Geometry, Volume I and II of Ergebnisse der Mathematik, Volumes 48 and 49. Springer (2004)Google Scholar
  14. 14.
    Markman, E.: Integral constraints on the monodromy group of the hyperkähler resolution of a symmetric product of a K3 surface. Int. J. Math. 21(21), 169–223 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Markman, E.: A survey of Torelli and monodromy results for holomorphic-symplectic varieties. In: Ebeling, W., et. al. (eds.) Complex and Differential Geometry, vol. 8, pp. 257–323. Springer Proceedings in Mathematics (2011)Google Scholar
  16. 16.
    Markman, E.: Prime exceptional divisors on holomorphic symplectic varieties and monodromy reflections. Kyoto J. Math. 53(2), 345–403 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Markman, E.: Lagrangian fibrations of holomorphic-symplectic varieties of K\(3^{}\)-type. In: Frühbis-Krüger, A., et. al. (eds) Algebraic and Complex Geometry, vol. 71. Springer Proceedings in Mathematics (2014)Google Scholar
  18. 18.
    Markman, E., Yoshiokai, K.: A proof of the Kawamata–Morrison cone conjecture for holomorphic symplectic varieties of K\(3^{}\) or generalized Kummer deformation type. Int. Math. Res. Not. 24, 13563–13574 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Matsushita, D.: On fibre space structures of a projective irreducible symplectic manifold. Topology 38(1), 79–83 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Matsushita, D.: Equidimensionality of Lagrangian fibrations on holomorphic symplectic manifolds. Math. Res. Lett. 7, 389–391 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Matsushita, D.: Addendum to: on fibre space structures of a projective irreducible symplectic manifold. Topology 38(1), 79–83 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Matsushita, D.: Holomorphic symplectic manifolds and Lagrangian fibrations. Acta Appl. Math. 75(1–3), 117–123 (2003)MathSciNetCrossRefGoogle Scholar
  23. 23.
    Matsushita, D.: On deformation of deformations of Lagrangian fibrations. arXiv:0903.2098 (2009)
  24. 24.
    Matsushita, D.: On isotropic divisors on irreducible symplectic manifolds. arXiv:1310.0896 (2013)
  25. 25.
    Mukai, S.: Symplectic structure of the moduli space of sheaves on an abelian or K3 surface. Invent. Math. 77, 101–116 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Mukai, S.: On the moduli space of bundles on K3 surfaces I. Tata Inst. Fundam. Res. Stud. Math. 11, 341–413 (1987)MathSciNetzbMATHGoogle Scholar
  27. 27.
    Riess, U.: On the Beauville conjecture. arXiv:1409.3484v2 (2014)
  28. 28.
    Sawon, J.: Abelian fibred holomorphic symplectic manifolds. Turk. J. Math. 27, 197–230 (2003)MathSciNetzbMATHGoogle Scholar
  29. 29.
    Verbitsky, M.: Mapping class group and a global Torelli theorem for hyperkähler manifolds. Duke Math. J. 162(15), 2929–2986 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Voisin, C.: Sur la stabilité des sous-variétés lagrangiennes des variétés symplectique holomorphes. Complex Proj. Geom. Camb. Univ. Press 159, 294–303 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Voisin, C.: Hodge Theory and Complex Algebraic Geometry I, Volume 76 of Cambridge Studies in Advanced Mathematics. Cambridge University Press (2002)Google Scholar
  32. 32.
    Yoshioka, K.: Moduli spaces of stable sheaves on abelian surfaces. Math. Ann. 321(4), 817–884 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Yoshioka, K.: Bridgeland’s stability and the positive cone of the moduli spaces of stable objects on an abelian surface. arXiv:1206.4838v2 (2012)

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Institut für Algebraische GeometrieLeibniz Universität HannoverHannoverGermany

Personalised recommendations