Skip to main content
Log in

An upper bound of the heat kernel along the harmonic-Ricci flow

  • Published:
manuscripta mathematica Aims and scope Submit manuscript

Abstract

In this paper, we first derive a Sobolev inequality along the harmonic-Ricci flow. We then prove a linear parabolic estimate based on the Sobolev inequality and Moser’s iteration. As an application, we will obtain an upper bound estimate for the heat kernel under the flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bailesteanu M.: Bounds on the heat kernel under the Ricci flow. Proc. Am. Math. Soc. 140, 691–700 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bailesteanu, M.: On the heat kernel under the Ricci flow coupled with the harmonic map flow. arXiv:1309.0138 [math.DG]

  3. Bailesteanu, M., Tran, H.: Heat kernel estimates under the Ricci-harmonic map flow. arXiv:1310.1619 [math.DG]

  4. Bakry D., Coulhon T., Ledoux M., Saloff-Coste L.: Sobolev inequalities in disguise. Indiana Univ. Math. J. 44, 1033–1047 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao H.D., Zhu X.P.: A complete proof of the Poincaré and geometrization conjectures—application of the Hamilton–Perelman theory of the Ricci flow. Asian J. Math. 10, 165–492 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  6. Chow, B., Lu, P., Ni, L.: Hamiltons Ricci Flow. Graduate Studies in Mathematics, vol. 77. American Mathematical Society, Providence (2006)

  7. Eells J., Sampson J.: Harmonic mappings of Riemannian manifolds. Am. J. Math. 86, 109–160 (1964)

    Article  MathSciNet  MATH  Google Scholar 

  8. Fang S.W.: Differential Harnack inequalities for heat equations with potentials under the Bernhard List’s flow. Geom. Dedicata 161, 11–22 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  9. Fang S.W.: Differential Harnack inequalities for backward heat equations with potentials under an extended Ricci flow. Adv. Geom. 13, 741–755 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Fang, S.W., Xu, H.F., Zhu, P.: Evolution and monotonicity of eigenvalues under the Ricci flow. Sci. China Math. (2015). doi:10.1007/s11425-014-4943-7

  11. Fang, S.W., Zhu, P.: Differential Harnack estimates for backward heat equations with potentials under geometric flows. Commun. Pure Appl. Anal. 14(3), 793–809 (2015)

  12. Hamilton R.S.: Three-mainfolds with positive Ricci curvature. J. Differ. Geom. 17, 255–306 (1982)

    MATH  Google Scholar 

  13. Hamilton R.S.: Four manifolds with positive Ricci curvature. J. Differ. Geom. 24, 153–179 (1986)

    MATH  Google Scholar 

  14. Hsu, S.Y.: Uniform Sobolev inequalities for manifolds evolving by Ricci flow. arXiv:0708.0893 [math.DG]

  15. Jiang, W.S.: Bergman kernel along the Kähler-Ricci flow and Tian’s conjecture. J. Reine Angew. Math. (2014). doi:10.1515/crelle-2014-0015

  16. Kuang S.L., Zhang Q.S.: A gradient estimate for all positive solutions of the conjugate heat equation under Ricci flow. J. Funct. Anal. 255, 1008–1023 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Li J.F.: Eigenvalues and energy functionals with monotonicity formulae under Ricci flow. Math. Ann. 338, 927–946 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Li P., Yau S.T.: On the parabolic kernel of the Schrödinger operator. Acta Math. 156, 153–201 (1986)

    Article  MathSciNet  Google Scholar 

  19. List B.: Evolution of an extended Ricci flow system. Comm. Anal. Geom. 16, 1007–1048 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  20. Liu X.G., Wang, K.: A Gaussian upper bound of the conjugate heat equation along an extended Ricci flow. arXiv:1412.3200 [math.DG]

  21. Müller R.: Ricci flow coupled with harmonic map flow. Ann. Sci. Ecole Norm. Supér. 45, 101–142 (2012)

    MathSciNet  MATH  Google Scholar 

  22. Perelman, G.: The entropy formula for the Ricci flow and its geometric applications. arXiv:math.DG/0211159

  23. Wang J.: Global heat kernel estimates. Pac. J. Math. 178, 377–398 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ye R.G.: Curvature estimates for the Ricci flow I. Calc. Var. 31, 417–437 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ye R.G.: The logarithmic Sobolev and Sobolev inequalities along the Ricci flow. Commun. Math. Stat. 3(1), 1–36 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  26. Zhang, Q.S.: Some gradient estimates for the heat equation on domain for an equation by Perelman. Int. Math. Res. Not. 2006, 1–39 (2006) (article id: 92314)

  27. Zhang, Q.S.: A uniform Sobolev inequality under Ricci flow. Int. Math. Res. Not. 2007, 1–17 (2007) (article id: rnm056)

  28. Zhang, Q.S.: Sobolev Inequalities, Heat Kernels Under Ricci Flow and Poincaré Conjecture. CRC Press, Boca Raton (2010)

  29. Zhu A.Q.: Differential Harnack inequalities for the backward heat equation with potential under the harmonic-Ricci flow. J. Math. Anal. Appl. 406, 502–510 (2013)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tao Zheng.

Additional information

Shouwen Fang: The work is supported by NSFC Grant No. 11401514.

Tao Zheng: The work is supported by NSFC Grant No. 11401023 and China Postdoctoral Science Foundation funded Project No. 2015T80040.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, S., Zheng, T. An upper bound of the heat kernel along the harmonic-Ricci flow. manuscripta math. 151, 1–18 (2016). https://doi.org/10.1007/s00229-016-0825-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-016-0825-3

Mathematics Subject Classification

Navigation