Skip to main content
Log in

Hyperbolization of cusps with convex boundary

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We prove that for every metric on the torus with curvature bounded from below by −1 in the sense of Alexandrov there exists a hyperbolic cusp with convex boundary such that the induced metric on the boundary is the given metric. The proof is by polyhedral approximation. This was the last open case of a general theorem: every metric with curvature bounded from below on a compact surface is isometric to a convex surface in a 3-dimensional space form.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Alexander, S., Kapovitch, V., Petrunin, A.: Alexandrov Geometry. Book draft (available online)

  2. Alexander S., Kapovitch V., Petrunin A.: An optimal lower curvature bound for convex hypersurfaces in Riemannian manifolds. Ill. J. Math. 52(3), 1031–1033 (2008)

    MathSciNet  MATH  Google Scholar 

  3. Alexandrov, A.D.: A. D. Alexandrov Selected Works. Part II. Chapman & Hall/CRC, Boca Raton, FL, (2006). Intrinsic geometry of convex surfaces, Edited by S. S. Kutateladze, Translated from the Russian by S. Vakhrameyev

  4. Ambrosio L., Tilli P.: Topics on Analysis in Metric Spaces, vol. 25 of Oxford Lecture Series in Mathematics and its Applications. Oxford University Press, Oxford (2004)

    MATH  Google Scholar 

  5. Burago D., Burago Y., Ivanov S.: A Course in Metric Geometry, vol. 33 of Graduate Studies in Mathematics. American Mathematical Society, Providence, RI (2001)

    MATH  Google Scholar 

  6. Burago Y., Gromov M., Perel’man G.: A. D. Aleksandrov spaces with curvatures bounded below. Uspekhi Mat. Nauk 47 No.2(284), 3–51 (1992)

    MathSciNet  MATH  Google Scholar 

  7. Blaschke, W., Herglotz, G.: Über die Verwirklichung einer geschlossenen Fläche mit vorgeschriebenem Bogenelement im Euklidischen Raum. Sitzungsber. Bayer. Akad. Wiss., Math.-Naturwiss. Abt., No.2, 229–230 (1937)

  8. Bridson M., Haefliger A.: Metric Spaces of Non-positive Curvature, vol. 319 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1999)

    Google Scholar 

  9. Bobenko A., Izmestiev I.: Alexandrov’s theorem, weighted Delaunay triangulations, and mixed volumes. Ann. Inst. Fourier (Grenoble) 58(2), 447–505 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  10. Canary, R.D., Epstein, D.B.A., Green, P.L.: Notes on notes of Thurston. In: Fundamentals of Hyperbolic Geometry: Selected Expositions, vol. 328 of London Mathematical Society Lecture Note Series. pp. 1–115. Cambridge University Press, Cambridge, (2006). (With a new foreword by Canary)

  11. Chang J.-E., Xiao L.: The Weyl problem with nonnegative Gauss curvature in hyperbolic space. Can. J. Math. 67(1), 107–131 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fillastre F., Izmestiev I.: Hyperbolic cusps with convex polyhedral boundary. Geom. Topol. 13(1), 457–492 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  13. Fillastre F.: Polyhedral realisation of hyperbolic metrics with conical singularities on compact surfaces. Ann. Inst. Fourier (Grenoble) 57(1), 163–195 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gromov M.: Partial Differential Relations, vol. 9 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer, Berlin (1986)

    Google Scholar 

  15. Guan B., Spruck J., Szapiel M.: Hypersurfaces of constant curvature in hyperbolic space. I. J. Geom. Anal. 19(4), 772–795 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Itoh J., Rouyer J., Vîlcu C.: Moderate smoothness of most Alexandrov surfaces. Internat. J. Math. 26(4), 1540004 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  17. Izmestiev I.: A variational proof of Alexandrov’s convex cap theorem. Discrete Comput. Geom. 40(4), 561–585 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  18. Izmestiev I.: Infinitesimal rigidity of smooth convex surfaces through the second derivative of the Hilbert–Einstein functional. Diss. Math. (Rozprawy Mat.) 492, 58 (2013)

    MathSciNet  MATH  Google Scholar 

  19. Labourie F.: Métriques prescrites sur le bord des variétés hyperboliques de dimension 3. J. Differ. Geom. 35(3), 609–626 (1992)

    MathSciNet  Google Scholar 

  20. Pogorelov, A.V.: Extrinsic Geometry of Convex Surfaces. American Mathematical Society, Providence, R.I., (1973). Translated from the Russian by Israel Program for Scientific Translations, Translations of Mathematical Monographs, vol. 35

  21. Ratcliffe, J.: Foundations of Hyperbolic Manifolds, vol. 149 of Graduate Texts in Mathematics, 2nd edn. Springer, New York (2006)

  22. Richard, T.: Ricci flow without upper bounds on the curvature and the geometry of some metric spaces. Theses, Université de Grenoble, September (2012)

  23. Rockafellar, R.: Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton, NJ, (1997). Reprint of the 1970 original, Princeton Paperbacks

  24. Rosenberg H., Spruck J.: On the existence of convex hypersurfaces of constant Gauss curvature in hyperbolic space. J. Differ. Geom. 40(2), 379–409 (1994)

    MathSciNet  MATH  Google Scholar 

  25. Rockafellar T., Wets R.: Variational Analysis, vol. 317 of Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer, Berlin (1998)

    Google Scholar 

  26. Schlenker J.-M.: Hyperbolic manifolds with convex boundary. Invent. Math. 163(1), 109–169 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  27. Slutskiy, D.: Compact domains with prescribed convex boundary metrics in quasi-Fuchsian manifolds. arXiv:1405.1650

  28. Slutskiy D.: Polyhedral metrics on the boundaries of convex compact quasi-Fuchsian manifolds. C. R. Math. Acad. Sci. Paris 352(10), 831–834 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Fillastre.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fillastre, F., Izmestiev, I. & Veronelli, G. Hyperbolization of cusps with convex boundary. manuscripta math. 150, 475–492 (2016). https://doi.org/10.1007/s00229-015-0814-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-015-0814-y

Mathematics Subject Classification

Navigation