Skip to main content

Advertisement

Log in

Łojasiewicz inequalities in o-minimal structures

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

This note is devoted to the generalization of Łojasiewicz inequalities for functions definable in o-minimal structures, which is, roughly speaking, a generalization for semialgebraic or global subanalytic functions. We present some o-minimal versions of the inequalities to compare two definable functions globally or in some neighborhoods of the zero-sets of the functions, and the gradient inequalities (Kurdyka–Łojasiewicz inequality and Bochnak–Łojasiewicz inequality). Some applications of the inequalities are given.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bochnak J., Coste M., Roy M.F.: Real Algebraic Geometry. Springer, Berlin (1998)

    Book  MATH  Google Scholar 

  2. Bolte J., Daniilidis A., Lewis A.: The Łojasiewicz inequality for nonsmooth subanalytic functions with applications to subgradient dynamical systems. SIAM J. Optm. 17(4), 1205–1223 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bolte J., Daniilidis A., Lewis A., Shiota M.: Clarke subgradients of stratifiable functions. SIAM J. Optim. 18(2), 556–572 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bochnak, J., Łojasiewicz, S.: A converse of the Kuipier–Kuo theorem. Springer Lecture Notes, vol. 192, 254–261 (1971)

  5. Coste M.: An Introduction to O-minimal Geometry. Dottorato di Ricerca in Matematica, Dip. Mat. Pisa. Instituti Editoriali e Poligrafici Internazionali, Pisa (2000)

    Google Scholar 

  6. van den Dries L.: Tame Topology and O-minimal Structures. LMS Lecture Notes. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  7. D’Acunto D., Valeurs critiques asymptotiques d’une fonction définisable dans une structure o-minimale, Ann. Polon. Math. 75(1), 35–45 (2000)

    MathSciNet  MATH  Google Scholar 

  8. D’Acunto D., Grandjean V.: A gradient inequality at infinity for tame functions. Rev. Mat. Complut. 18(2), 493–501 (2005)

    MathSciNet  MATH  Google Scholar 

  9. van den Dries L., Miller C.: Geometric categories and o-minimal structures. Duke Math. J. 84(2), 497–540 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  10. Garcia Barroso E., Krasiński T., Płoski A.: On the Łojasiewicz numbers. C. R. Acad. Sci. Paris, Ser. I 341, 357–360 (2005)

    Article  MATH  Google Scholar 

  11. Hömander L.: On the division of distributions by polynomials. Arkiv. Mathematik 3, 555–568 (1958)

    Article  MathSciNet  Google Scholar 

  12. Kuo T.C.: On C 0-sufficiency of jets of potencial function. Topology 8, 167–171 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  13. Kurdyka K.: On gradients of functions definable in o-minimal structures. Ann. Inst. Fourier 48, 769–783 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Koike S., Loi T.L., Paunescu L., Shiota M.: Directional properties of sets definable in o-minimal structures. Ann. Inst. Fourier 63(5), 2017–2047 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kurdyka K., Mostowski T., Parusiński A.: Proof of Gradient conjecture of R. Thom. Ann. Math. 52, 763–792 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kurdyka, K., Parusiński, A.: Quasi-convex decoposition in o-minimal structures. Applications to the gradient conjecture, Singularity theory and its applications, Adv. Stud. Pure Math. vol. 43, pp. 137–177. Math. Soc. Japan, Tokyo (2006)

  17. Loi T.L.: Łojasiewicz inequalities for sets definable in the structure \({\mathbf{R}_{\rm exp}}\). Ann. Inst. Fourier 45(4), 951–971 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  18. Łojasiewicz S.: Sur le problème de la division. Studia Math. 18, 87–136 (1959)

    MathSciNet  MATH  Google Scholar 

  19. Łojasiewicz, S.: Une propriété topologie des sous-ensembles analytiques réel, Colloques Internationaux du CNRS, Les équations aux dérivées partielles, vol. 117, ed. B. Malgrange (Paris 1962), Publications du CNRS, Paris, (1963)

  20. Łojasiewicz S.: Ensembles Semi-Analytiques. IHES, Bures-sur-Yvette (1965)

    MATH  Google Scholar 

  21. Lejeune-Jalabert M., Teissier B.: Clôture intégrale des idéaux et équisingularité, avec 7 compléments. Ann. Fac. Sci. Toulouse 17(4), 781–859 (2008)

    Article  MathSciNet  Google Scholar 

  22. Loi T.L., Zaharia A.: Bifurcation sets of functions definable in o-minimal structures. Ill. J. Math. 42(3), 449–457 (1998)

    MathSciNet  MATH  Google Scholar 

  23. Malgrange B.: Ideals of Differentiable Functions. Oxford University Press, Oxford (1966)

    MATH  Google Scholar 

  24. Thao N.T., Tiep D.S., Vui H.H.: Łojasiewicz inequality for polynomial functions on noncompact domain. Int. J. Math. 23, 12500033 (2012)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ta Lê Loi.

Additional information

This research is partially supported by Vietnamese National Foundation for Science and Technology Development (NAFOSTED)—Project’s ID 101.02.2013.08, and GDRI Singularities (International Research Project of CNRS).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Loi, T.L. Łojasiewicz inequalities in o-minimal structures. manuscripta math. 150, 59–72 (2016). https://doi.org/10.1007/s00229-015-0806-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-015-0806-y

Mathematics Subject Classification

Navigation