Skip to main content
Log in

Positive isotropic curvature and self-duality in dimension 4

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We study a positivity condition for the curvature of oriented Riemannian 4-manifolds: the half-PIC condition. It is a slight weakening of the positive isotropic curvature (PIC) condition introduced by M. Micallef and J. Moore. We observe that the half-PIC condition is preserved by the Ricci flow and satisfies a maximality property among all Ricci flow invariant positivity conditions on the curvature of oriented 4-manifolds. We also study some geometric and topological aspects of half-PIC manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Besse, A.L.: Einstein Manifolds. Ergebnisse der Mathematik und ihrer Grenzgebiete [Results in Mathematics and Related Areas], vol. 10. Springer, Berlin, Heidelberg (1987). doi:10.1007/978-3-540-74311-8

  2. Böhm C., Wilking B.: Manifolds with positive curvature operators are space forms. Ann. Math. 167, 1079–1097 (2008)

    Article  MATH  Google Scholar 

  3. Bony J.M.: Principe du maximum, in égalité de Harnack et unicité du problème de Cauchy pour les opérateurs elliptiques dégénérés. Ann. Inst. Fourier (Grenoble) 19, 277–304 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brendle S.: Einstein manifolds with nonnegative isotropic curvature are locally symmetric. Duke Math. J. 151, 1–21 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brendle, S.: Einstein metrics and preserved curvature conditions for the Ricci flow, complex and differential geometry conference at Hannover 2009, Springer Proceedings in Mathematics, 8, 81–85, (2011)

  6. Brendle S., Schoen R.: Classification of manifolds with weakly \({\frac{1}{4}}\)-pinched curvatures. Acta Math. 200, 287–307 (2008)

    Article  MathSciNet  Google Scholar 

  7. Brendle S., Schoen R.: Manifolds with \({\frac{1}{4}}\)-pinched curvatures are space forms. J. AMS 22, 287–307 (2009)

    MathSciNet  MATH  Google Scholar 

  8. Chen B.-L., Zhu X.-P.: Ricci flow with surgery on four-manifolds with positive isotropic curvature. J. Diff. Geom 74, 177–264 (2006)

    MATH  Google Scholar 

  9. Derdzinski A.: Self-dual Kähler manifolds and Einstein manifolds of dimension four. Comp. Math. 49, 405–433 (1983)

    MathSciNet  MATH  Google Scholar 

  10. Freed, D.S., Uhlenbeck, K.K.: Instantons and Four-Manifolds.Mathematical Sciences Research Institute Publications, vol. 1, 2nd edn. Springer, New York (1991). doi:10.1007/978-1-4613-9703-8

  11. Friedrich T., Kurke H.: Compact four-dimensional self dual Einstein manifolds with positive scalar curvature. Math. Nachr. 106, 271–299 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  12. Gursky M., LeBrun C.: On Einstein manifolds of positive sectional curvature. Ann. Global Anal. Geom. 17, 315–328 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gururaja H.S., Maity S., Seshadri H.: On Wilking’s criterion for the Ricci flow. Math. Z 274, 471–481 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hamilton R.: Four-manifolds with positive isotropic curvature. Comm. Anal. Geom. 5, 1–92 (1997)

    MathSciNet  MATH  Google Scholar 

  15. Hamilton R.: Four-manifolds with positive curvature operator. J. Diff. Geom. 22, 153–179 (1986)

    Google Scholar 

  16. Hitchin N.: Compact four-dimensional Einstein manifolds. J. Diff. Geom. 9, 435–441 (1974)

    MathSciNet  MATH  Google Scholar 

  17. Hoelzel, S.: Surgery stable curvature conditions, arXiv:1303.6531

  18. LeBrun C.: On the topology of self-dual 4-manifolds. Proc. AMS 98, 637–640 (1986)

    MathSciNet  MATH  Google Scholar 

  19. Micallef M., Moore J.: Minimal two-spheres and the topology of manifolds with positive curvature on totally isotropic two-planes. Ann. Math. 127, 199–227 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  20. Micallef M., Wang M.: Metrics with nonnegative isotropic curvature. Duke Math. J. 72, 649–672 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Nguyen H.T.: Isotropic curvature and the Ricci flow. Int. Math. Res. Not. 3, 536–558 (2010)

    Google Scholar 

  22. Ni, L., Wallach, N.: Four-Dimensional Gradient Shrinking Solitons. Int. Math. Res. Not., 4 (2008), Article ID rnm152

  23. Richard T., Seshadri H.: Noncoercive Ricci flow invariant cones. Proc. AMS 143, 2661–2674 (2015)

    Article  MathSciNet  Google Scholar 

  24. Seshadri H.: Manifolds with nonnegative isotropic curvature. Comm. Anal. Geom. 4, 621–635 (2009)

    Article  MathSciNet  Google Scholar 

  25. Wilking B.: A Lie algebraic approach to Ricci flow invariant curvature conditions and Harnack inequalities. J. Reine Angew. Math. 679, 223–247 (2013)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Richard.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Richard, T., Seshadri, H. Positive isotropic curvature and self-duality in dimension 4. manuscripta math. 149, 443–457 (2016). https://doi.org/10.1007/s00229-015-0790-2

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-015-0790-2

Mathematics Subject Classification

Navigation