Skip to main content
Log in

Partial regularity and blow-up asymptotics of weak solutions to degenerate parabolic systems of porous medium type

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

In the present paper, we deal with the degenerate parabolic system of porous medium type with non-linear diffusion m and interaction q in \({\rm{I\!R}}^N\) in the critical case of \({q =m+\frac{2}{N}}\). We establish the \({\varepsilon}\) -regularity theorem for weak solutions. As an application, the structure of asymptotics of blow-up solution is clarified. In particular, we show that the solution behaves like the δ-function at the blow-up points. Moreover, we prove that the number of blow-up points is finite, which can be controlled in terms of the mass of initial data. We also give a sharp constant for the \({\varepsilon}\) -regularity theorem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Aronszajn N., Smith K.T.: Theory of Bessel potentials. Part I. Ann. Inst. Fourier. Grenoble 11, 385–475 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  2. Biler P., Nadzieja T., Stanczy R.: Nonisothermal systems of self-attracting Fermi-Dirac particles. Banach Center Pulb. 66, 61–78 (2004)

    Article  MathSciNet  Google Scholar 

  3. Bian S., Liu J.-G.: Dynamic and steady states for multi-dimensional Keller–Segel model with diffusion exponent m > 0. Commun. Math. Phys. 323, 1017–1070 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  4. Blanchet A., Dolbeault J., Perthame B.: Two-dimensional Keller–Segel model: optimal critical mass and qualitative properties of the solutions. Electron. J. Differ. Equ. 44, 1–33 (2006)

    MathSciNet  Google Scholar 

  5. Blanchet A., Carrillo J.A., Laurencot P.: Critical mass for a Patlak–Keller–Segel model with degenerate diffusion in higher dimensions. Calculus Var. Partial Differ. Equ. 35, 133–168 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  6. Caffarelli L.A., Kohn R., Nirenberg L.: Partial regularity of suitable weak solutions of the Navier–Stokes equations. Comm. Pure Appl. Math. 35, 771–831 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen Y., Struwe M.: Existence and partial regularity results for the heat flow for harmonic maps. Math. Z 201, 83–103 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  8. Childress S., Percus J.K.: Nonlinear aspects of chemotaxis. Math. Biosci. 56, 217–237 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  9. Dibenedetto E.: Degenerate Parabolic Equations. Springer, New York (1993)

    Book  MATH  Google Scholar 

  10. Herrero M.A., Velázquez J.J.L.: Singularity patterns in a chemotaxis model. Math. Ann. 306, 583–623 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Herrero M.A., Velázquez J.J.L.: A blow-up mechanism for a chemotaxis model. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 24, 633–683 (1997)

    MATH  MathSciNet  Google Scholar 

  12. Horstmann D.: From 1970 until present: the Keller–Segel model in chemotaxis and its consequences.I. I. Jahresber. Deutsch. Math-Verein. 105, 103–165 (2003)

    MATH  MathSciNet  Google Scholar 

  13. Keller E.F., Segel L.A.: Initiation of slime mold aggregation viewed as an instability. J. Theor. Biol. 26, 399–415 (1970)

    Article  MATH  Google Scholar 

  14. Kim I., Yao Y.: The Patlak–Keller–Segel model and its variations: properties of solutions via maximum principle. SIAM J. Math. Anal. 44, 568–602 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kozono H., Sugiyama Y.: Local existence and finite time blow-up in the 2-D Keller–Segel system. J. Evol. Equ. 8, 353–378 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  16. Kuroda, S.T.: Supekutoru-riron. II, (Japanese) [Spectral theory. II] Iwanami Shoten Kiso Sūgaku [Iwanami Lectures on Fundamental Mathematics], 17. (1983)

  17. Lions J.L., Magenus E.: Non-homogeneous Boundary Value Problems and Applications. I, II. Springer, Berlin (1972)

    Book  Google Scholar 

  18. : Existence and partial regularity results for the gradient flow for a variational functional of degenerate type. Rend. Mat. Appl 7, 317–351 (1999)

    MathSciNet  Google Scholar 

  19. Nanjundiah V.: Chemotaxis signal relaying and aggregation morphology. Theor. Biol. 42, 63–105 (1973)

    Article  Google Scholar 

  20. Nagai T., Senba T., Suzuki T.: Chemotactic collapse in a parabolic system of mathematical biology. Hiroshima Math. J. 30, 463–497 (2000)

    MATH  MathSciNet  Google Scholar 

  21. Schoen R., Uhlenbeck K.: Regularity of minimizing harmonic maps into the sphere. Invent. Math. 78, 89–100 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  22. Stein E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton Mathematical Series, No.30. Princeton University Press, Princeton (1970)

    Google Scholar 

  23. Struwe M.: The existence of surfaces of constant mean curvature with free boundaries. Acta Math. 160, 19–64 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  24. Sugiyama Y.: Global existence in the sub-critical cases and finite time blow-up in the super-critical cases to degenerate Keller–Segel systems. Differ. Integral Equ. 9, 841–876 (2006)

    MathSciNet  Google Scholar 

  25. Sugiyama Y., Kunii H.: Global existence and decay properties for a degenerate Keller–Segel model with a power factor in drift term. J. Differ. Equ. 227, 333–364 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  26. Sugiyama Y.: Time global existence and asymptotic behavior of solutions to degenerate quasi-linear parabolic systems of chemotaxis. Differ. Integral Equ. 20, 133–180 (2007)

    MATH  MathSciNet  Google Scholar 

  27. Sugiyama Y.: Application of the best constant of the Sobolev inequality to degenerate Keller–Segel models. Adv. Differ. Equ. 12, 124–144 (2007)

    MathSciNet  Google Scholar 

  28. Sugiyama Y.: Blow-up criterion via scaling invariant quantities with effect on coefficient growth in Keller–Segel system. Differ. Integral Equ. 23, 619–634 (2010)

    MATH  MathSciNet  Google Scholar 

  29. Sugiyama Y.: On \({\varepsilon}\) -regularity theorem and asymptotic behaviors of solutions for Keller–Segel systems. SIAM J. Math. Anal. 41, 1664–1692 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  30. Sugiyama Y.: \({\varepsilon}\) -regularity theorem and its application to the blow-up solutions of Keller–Segel systems in higher dimensions. J. Math. Anal. Appl. 364, 51–70 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Sugiyama Y.: Asymptotic profile of blow-up solutions of Keller–Segel systems in super-critical cases. Differ. Integral Equ. 23, 601–618 (2010)

    MATH  MathSciNet  Google Scholar 

  32. Sugiyama Y., Velázquez J.J.L.: Self-similar aggregation with different masses for the Keller–Segel system with porous medium diffusion. Adv. Differ. Equ. 16, 85–112 (2011)

    MATH  Google Scholar 

  33. Talenti G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 4, 353–372 (1976)

    Article  MathSciNet  Google Scholar 

  34. Yao Y., Bertozzi, A.L.: Blow-up dynamics for the aggregation equation with degenerate diffusion. Physca D (2013)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yoshie Sugiyama.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sugiyama, Y. Partial regularity and blow-up asymptotics of weak solutions to degenerate parabolic systems of porous medium type. manuscripta math. 147, 311–363 (2015). https://doi.org/10.1007/s00229-015-0756-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-015-0756-4

Mathematical Subject Classification

Navigation