Skip to main content
Log in

Quantitative stratification and higher regularity for biharmonic maps

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

In this paper we prove quantitative regularity results for stationary and minimizing extrinsic biharmonic maps. As an application, we determine sharp, dimension independent L p bounds for \({\nabla^k f}\) that do not require a small energy hypothesis. In particular, every minimizing biharmonic map is in W 4,p for all \({1 \le p < 5/4}\). Further, for minimizing biharmonic maps from \({\Omega \subset \mathbb{R}^5}\), we determine a uniform bound on the number of singular points in a compact set. Finally, using dimension reduction arguments, we extend these results to minimizing and stationary biharmonic maps into special targets.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Angelsberg G.: A monotonicity formula for stationary biharmonic maps. Math. Z. 252(2), 287–293 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bethuel F.: On the singular set of stationary harmonic maps. Manuscr. Math. 78(4), 417–443 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chang S.-Y.A., Wang L., Yang P.C.: Regularity of harmonic maps. Commun. Pure Appl. Math. 52(9), 1099–1111 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  4. Chang S.-Y.A., Wang L., Yang P.C.: A regularity theory of biharmonic maps. Commun. Pure Appl. Math. 52(9), 1113–1137 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Cheeger, J., Haslhofer, R., Naber, A.: Quantitative stratification and the regularity of harmonic map flow, arXiv:1308.2514 [math.DG]

  6. Cheeger J., Haslhofer R., Naber A.: Quantitative stratification and the regularity of mean curvature flow. Geom. Funct. Anal. 23(3), 828–847 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  7. Cheeger J., Naber A.: Lower bounds on Ricci curvature and quantitative behavior of singular sets. Invent. Math. 191(2), 321–339 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  8. Cheeger J., Naber A.: Quantitative stratification and the regularity of harmonic maps and minimal currents. Commun. Pure Appl. Math. 66(6), 965–990 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cheeger, J., Naber, A.,Valtorta, D.: Critical sets of elliptic equations, preprint

  10. Evans L.C.: Partial regularity for stationary harmonic maps into spheres. Arch. Ration. Mech. Anal. 116(2), 101–113 (1991)

    Article  MATH  Google Scholar 

  11. Focardi, M., Marchese, A., Spadaro, E.: Improved estimate of the singular set of dir-minimizing q-valued functions, preprint

  12. Hélein F.: Régularité des applications faiblement harmoniques entre une surface et une sphère. C. R. Acad. Sci. Paris Sér. I Math. 311(9), 519–524 (1990)

    MATH  Google Scholar 

  13. Hélein F.: Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne. C. R. Acad. Sci. Paris Sér. I Math. 312(8), 591–596 (1990)

    Google Scholar 

  14. Hong M.-C., Wang C.: Regularity and relaxed problems of minimizing biharmonic maps into spheres. Calc. Var. Partial Differ. Equ. 23(4), 425–450 (2005)

    Article  MathSciNet  Google Scholar 

  15. Lamm T., Rivière T.: Conservation laws for fourth order systems in four dimensions. Commun. Partial Differ. Equ. 33(1-3), 245–262 (2008)

    Article  MATH  Google Scholar 

  16. Lin F.-H.: Gradient estimates and blow-up analysis for stationary harmonic maps. Ann. Math. (2) 149(3), 785–829 (1999)

    Article  MATH  Google Scholar 

  17. Luckhaus S.: Partial Hölder continuity for minima of certain energies among maps into a Riemannian manifold. Indiana Univ. Math. J. 37(2), 349–367 (1988)

    Article  MATH  MathSciNet  Google Scholar 

  18. Moser R.: A variational problem pertaining to biharmonic maps. Commun. Partial Differ. Equ. 33(7-9), 1654–1689 (2008)

    Article  MATH  Google Scholar 

  19. Naber, A., Valtorta, D., Veronelli, G.: Quantitative regularity for p-harmonic maps, arXiv:1409.8537 [math.DG]

  20. Rivière, T.: Conservation laws for conformally invariant variational problems. Invent. Math. 168(1), 1–22. MR 2285745 (2008d:58010)

  21. Rivière T., Struwe M.: Partial regularity for harmonic maps and related problems. Commun. Pure Appl. Math. 61(4), 451–463 (2008)

    Article  MATH  Google Scholar 

  22. Scheven C.: Dimension reduction for the singular set of biharmonic maps. Adv. Calc. Var. 1(1), 53–91 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Scheven C.: An optimal partial regularity result for minimizers of an intrinsically defined second-order functional. Ann. Inst. H. Poincaré Anal. Non Linéaire 26(5), 1585–1605 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  24. Schoen R., Uhlenbeck K.: A regularity theory for harmonic maps. J. Differ. Geom. 17(2), 307–335 (1982)

    MATH  MathSciNet  Google Scholar 

  25. Struwe M.: Partial regularity for biharmonic maps, revisited. Calc. Var. Partial Differ. Equ. 33(2), 249–262 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Strzelecki P.: On biharmonic maps and their generalizations. Calc. Var. Partial Differ. Equ. 18(4), 401–432 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  27. Wang, C.: Biharmonic maps from\({{\mathbb{R}} ^4}\) into a Riemannian manifold. Calc. Var. Partial Differ. Equ., (2004)

  28. Wang C.: Remarks on biharmonic maps into spheres. Calc. Var. Partial Differ. Equ. 21, 221–242 (2004)

    Article  MATH  Google Scholar 

  29. Wang C.: Stationary biharmonic maps from \({{\mathbb{R}} ^m}\) into a Riemannian manifold. Commun. Pure Appl. Math. 57(4), 419–444 (2004)

    Article  MATH  Google Scholar 

  30. White B.: Stratification of minimal surfaces, mean curvature flows, and harmonic maps. J. Reine Angew. Math. 488, 1–35 (1997)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Breiner.

Additional information

The first author was supported in part by NSF grant DMS-1308420.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breiner, C., Lamm, T. Quantitative stratification and higher regularity for biharmonic maps. manuscripta math. 148, 379–398 (2015). https://doi.org/10.1007/s00229-015-0750-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-015-0750-x

Mathematics Subject Classification

Navigation