Skip to main content
Log in

Zero-generic initial ideals

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

Given a homogeneous ideal I of a polynomial ring \({A={\mathbb{K}}[X_1,\ldots,X_n]}\) and a monomial order \({\tau}\), we construct a new monomial ideal of A associated with I. We call it the zero-generic initial ideal of I with respect to \({\tau}\) and denote it with \({{\rm gin}_0(I)}\). When char \({\mathbb{K}=0}\), a zero-generic initial ideal is the usual generic initial ideal. We show that \({{\rm gin}_0(I)}\) is endowed with many interesting properties and, quite surprisingly, it also satisfies Green’s Crystallization Principle, which is known to fail in positive characteristic. Thus, zero-generic initial ideals can be used as formal analogues of generic initial ideals computed in characteristic 0.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahn J., Kwak S., Song Y.: Generic initial ideals of singular curves in graded lexicographic order. J. Algebra 372, 584–594 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  2. Aramova A., Herzog J.: p-Borel principal ideals. Ill. J. Math. 41(1), 103–121 (1997)

    MATH  MathSciNet  Google Scholar 

  3. Aramova A., Herzog J., Hibi T.: Ideals with stable Betti numbers. Adv. Math. 152(1), 72–77 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bayer D., Charalambous H., Popescu S.: Extremal Betti numbers and applications to monomial ideals. J. Algebra 221(2), 497–512 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bayer D., Stillman M.: A criterion for detecting m-regularity. Invent. Math. 87(1), 1–11 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bermejo I., Gimenez P.: Saturation and Castelnuovo–Mumford regularity. J. Algebra 303, 592–617 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bruns W., Herzog J.: Cohen–Macaulay Rings. Revised Edition. Cambridge University Press, Cambridge (1998)

    Google Scholar 

  8. Caviglia G., Kummini M.: Betti tables of p-Borel-fixed ideals. J. Algebr. Combin. 39(3), 711–718 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Caviglia G., Sbarra E.: Characteristic-free bounds for Castelnuovo–Mumford regularity. Compos. Math. 141(6), 1365–1373 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  10. Caviglia, G., Sbarra, E.: A lex-plus-power inequality for local cohomology modules. Math. Ann. doi:10.1007/s00208-015-1180-5

  11. Caviglia G., Murai S.: Sharp upper bounds for the Betti numbers of a given Hilbert polynomial. Algebra Number Theory 7(5), 1019–1064 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  12. Cho H.M., Cho Y.H., Park J.P.: Generic initial ideals of arithmetically Cohen–Macaulay projective subschemes. Commun. Algebra 35(7), 2281–2297 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  13. Cioffi, F., Lella, P., Marinari, M.G., Roggero, M.: Minimal Castelnuovo–Mumford regularity fixing the Hilbert polynomial. arXiv:1307.2707 [math.AG]

  14. Conca A.: Koszul homology and extremal properties of Gin and Lex. Trans. Am. Math. Soc. 356(7), 2945–2961 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  15. Conca A., Sidman J.: Generic initial ideals of points and curves. J. Symb. Comput. 40(3), 1023–1038 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Eisenbud D.: Commutative Algebra with a View Towards Algebraic Geometry. Springer, New York (1995)

    Google Scholar 

  17. Ene V., Pfister G., Popescu D.: Betti numbers for p-stable ideals. Commun. Algebra 28(3), 1515–1531 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  18. Fløystad G., Green M.: The information encoded in initial ideals. Trans. Am. Math. Soc. 353, 1427–1453 (2001)

    Article  Google Scholar 

  19. Fløystad G., Stillman M.: Geometric properties derived from generic initial spaces. Proc. Am. Math. Soc. 137(11), 3619–3625 (2009)

    Article  Google Scholar 

  20. Galligo A.: A propos du théorèm de préparation de Weierstrass, in Fonctions des Plusieurs Variables Complexes. Lect. Notes Math. 409, 543–579 (1974)

    Article  MathSciNet  Google Scholar 

  21. Green, M et al.: Generic initial ideals. In: Elias, J (ed.) Six Lectures on Commutative Algebra, pp. 119–186. Birkhäuser Verlag AG, Basel (2010)

  22. Herzog J., Hibi T.: Componentwise linear ideals. Nagoya Math. J. 153, 141–153 (1999)

    MATH  MathSciNet  Google Scholar 

  23. Herzog J., Hibi T.: Monomial Ideals. GTM 260. Springer, Berlin (2010)

    Google Scholar 

  24. Herzog J., Popescu D.: On the regularity of p-Borel ideals. Proc. Am. Math. Soc. 129(9), 2563–2570 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  25. Herzog J., Reiner V., Welker V.: Componentwise linear ideals and Golod rings. Mich. Math. 46(2), 211–223 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  26. Herzog, J., Sbarra, E.: Sequentially Cohen–Macaulay modules and local cohomology. In: Algebra, Arithmetic and Geometry, Part I, II (Mumbai, 2000) Tata Inst. Fund. Res., Bombay, pp. 327–340 (2002)

  27. Kalai, G.: Algebraic shifting. In: Computational Commutative Algebra and Combinatorics (Osaka, 1999), pp. 121–163, Adv. Stud. Pure Math., 33, Math. Soc. Japan, Tokyo (2002)

  28. Murai S.: Generic initial ideals and exterior algebraic shifting of the join of simplicial complexes. Ark. Mat. 45(2), 327–336 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  29. Murai S.: Generic initial ideals and squeezed spheres. Adv. Math. 214(2), 701–729 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  30. Murai S., Hibi T.: Gin and lex of certain monomial ideals. Math. Scand. 99(1), 76–86 (2006)

    MATH  MathSciNet  Google Scholar 

  31. Murai S., Singla P.: Rigidity of linear strands and generic initial ideals. Nagoya Math. J. 190, 35–61 (2008)

    MATH  MathSciNet  Google Scholar 

  32. Pardue, K.: Nonstandard Borel-Fixed Ideals. Ph.D. Thesis, Brandeis University (1994)

  33. Pardue K.: Deformation classes of graded modules and maximal Betti numbers. Ill. J. Math. 40, 564–585 (1996)

    MATH  MathSciNet  Google Scholar 

  34. Peeva I.: Graded Syzygies. Algebra and Applications 14. Springer, London (2011)

    Book  Google Scholar 

  35. Sbarra E.: Upper bounds for local cohomology for rings with given Hilbert function. Comm. Algebra 29(12), 5383–5409 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  36. Sbarra E.: Ideals with maximal local cohomology. Rend. Sem. Mat. Univ. Padova 111, 265–275 (2004)

    MATH  MathSciNet  Google Scholar 

  37. Trung N.V.: Gröbner bases, local cohomology and reduction number. Proc. Am. Math. Soc. 129(1), 9–18 (2001)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enrico Sbarra.

Additional information

The work of Giulio Caviglia was supported by a grant from the Simons Foundation (209661 to G. C.).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Caviglia, G., Sbarra, E. Zero-generic initial ideals. manuscripta math. 148, 507–520 (2015). https://doi.org/10.1007/s00229-015-0748-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-015-0748-4

Mathematics Subject Classification

Navigation