Skip to main content
Log in

Integrability of generalized pluriharmonic maps

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

In this paper we provide examples of maps from almost complex domains into pseudo-Riemannian symmetric targets, which are pluriharmonic and not integrable, i.e. do not admit an associated family. More precisely, for one class of examples the source has a non-integrable complex structure, like for instance a nearly Kähler structure and the target is a Riemannian symmetric space and for the other class the source is a complex manifold and the target is a pseudo-Riemannian symmetric space. These examples show, that a former result, Theorem 5.3 of [12], on the existence of associated families is sharp.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balan V., Dorfmeister J.: Weierstrass-type representation for harmonic maps into general symmetric spaces via loop groups. J. Math. Soc. Jpn. 57(1), 69–94 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  2. Belgun F., Moroianu A.: Nearly Kähler 6-manifolds with reduced holonomy. Ann. Glob. Anal. Geom. 19(4), 307–319 (2001). doi:10.1023/A:1010799215310

    Article  MATH  MathSciNet  Google Scholar 

  3. Besse, A.L.: Einstein Manifolds. Classics in Mathematics. Springer, Berlin (2008). Reprint of the 1987 edition

  4. Bryant R.L.: Conformal and minimal immersions of compact surfaces into the 4-sphere. J. Differ. Geom. 17(3), 455–473 (1982)

    MATH  Google Scholar 

  5. Burstall F.E., Gutt S., Rawnsley J.: Twistor spaces for Riemannian symmetric spaces. Math. Ann. 295(4), 729–743 (1993). doi:10.1007/BF01444914

    Article  MATH  MathSciNet  Google Scholar 

  6. Burstall, F.E., Pedit, F.: Harmonic maps via Adler–Kostant–Symes theory. In: Harmonic Maps and Integrable Systems. Aspects Math., E23, Friedr. Vieweg, Braunschweig, pp. 221–272 (1994)

  7. Burstall F.E., Ferus D., Pedit F., Pinkall U.: Harmonic tori in symmetric spaces and commuting Hamiltonian systems on loop algebras. Ann. Math. (2) 138(1), 173–212 (1993). doi:10.2307/2946637

    Article  MATH  MathSciNet  Google Scholar 

  8. Burstall, F.E., Rawnsley, J.H.: Twistor Theory for Riemannian Symmetric Spaces. Lecture Notes in Mathematics, vol. 1424. Springer, Berlin (1990). With applications to harmonic maps of Riemann surfaces

  9. Butruille, J.-B.: Classification des variétés approximativement kähleriennes homogènes. Ann. Glob. Anal. Geom. 27(3), 201–225 (2005). doi:10.1007/s10455-005-1581-x (French with English summary)

  10. Calabi, E.: Quelques Applications de l’Analyse aux Surfaces d’Aire Minima, Topics in Complex Manifolds, Univ. Montreal, pp. 59–81 (1967)

  11. Cheeger, J., Ebin, D.G.: Comparison Theorems in Riemannian Geometry, vol. 9. North-Holland Mathematical Library, North-Holland Publishing Co., Amsterdam (1975)

  12. Cortés, V., Schäfer, L.: Differential geometric aspects of the tt*-equations, From Hodge theory to integrability and TQFT tt*-geometry. In: Proceedings of the Symposium Pure Mathematics, vol. 78, pp. 75–86. American Mathematical Society, Providence (2008)

  13. Cortés V., Schäfer L.: Flat nearly Kähler manifolds. Ann. Glob. Anal. Geom. 32(4), 379–389 (2007). doi:10.1007/s10455-007-9068-6

    Article  MATH  Google Scholar 

  14. Din A.M., Zakrzewski W.J.: General classical solutions in the CP n-1 model. Nucl. Phys. B 174(2-3), 397–406 (1980). doi:10.1016/0550-3213(80)90291-6

    Article  MathSciNet  Google Scholar 

  15. Dorfmeister J., Pedit F., Wu H.: Weierstrass type representation of harmonic maps into symmetric spaces. Comm. Anal. Geom. 6(4), 633–668 (1998)

    MATH  MathSciNet  Google Scholar 

  16. Dubrovin B.: Geometry and integrability of topological-antitopological fusion. Comm. Math. Phys. 152(3), 539–564 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  17. Eells, J., Salamon, S.: Twistorial construction of harmonic maps of surfaces into four-manifolds. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 12(4), 589–640 (1985), (1986)

  18. Eells J., Wood J.C.: Harmonic maps from surfaces to complex projective spaces. Adv. Math. 49(3), 217–263 (1983). doi:10.1016/0001-8708(83)90062-2

    Article  MATH  MathSciNet  Google Scholar 

  19. Eschenburg J.-H., Quast P.: Pluriharmonic maps into Kähler symmetric spaces and Sym’s formula. Math. Z. 264(2), 469–481 (2010). doi:10.1007/s00209-008-0472-9

    Article  MATH  MathSciNet  Google Scholar 

  20. Eschenburg J.-H., Tribuzy R.: Associated families of pluriharmonic maps and isotropy. Manuscr. Math. 95(3), 295–310 (1998). doi:10.1007/s002290050030

    Article  MATH  MathSciNet  Google Scholar 

  21. Friedrich T., Ivanov S.: Parallel spinors and connections with skew-symmetric torsion in string theory. Asian J. Math. 6(2), 303–335 (2002)

    MATH  MathSciNet  Google Scholar 

  22. Gauduchon, P.: Hermitian connections and Dirac operators. Boll. Un. Mat. Ital. B (7) 11(2, suppl.), 257–288 (1997). English, with Italian summary

  23. Glazebrook J.F.: Strings, harmonic maps and hyperbolic systems. Comput. Math. Appl. 19(8-9), 117–125 (1990). doi:10.1016/0898-1221(90)90269-P

    Article  MATH  MathSciNet  Google Scholar 

  24. González Dávila J.C., Martin Cabrera F.: Homogeneous nearly Kähler manifolds. Ann. Glob. Anal. Geom. 42(2), 147–170 (2012). doi:10.1007/s10455-011-9305-x

    Article  MATH  Google Scholar 

  25. Gray A.: Minimal varieties and almost Hermitian submanifolds. Mich. Math. J. 12, 273–287 (1965)

    Article  MATH  Google Scholar 

  26. Gray A.: Riemannian manifolds with geodesic symmetries of order 3. J. Differ. Geom. 7, 343–369 (1972)

    MATH  Google Scholar 

  27. Gray A., Hervella L.M.: The sixteen classes of almost Hermitian manifolds and their linear invariants. Ann. Mat. Pura Appl. (4) 123, 35–58 (1980). doi:10.1007/BF01796539

    Article  MATH  MathSciNet  Google Scholar 

  28. Higaki M.: Actions of loop groups on the space of harmonic maps into reductive homogeneous spaces. J. Math. Sci. Univ. Tokyo 5(3), 401–421 (1998)

    MATH  MathSciNet  Google Scholar 

  29. Hitchin N.J.: The self-duality equations on a Riemann surface. Proc. Lond. Math. Soc. (3) 55(1), 59–126 (1987). doi:10.1112/plms/s3-55.1.59

    Article  MATH  MathSciNet  Google Scholar 

  30. Knapp A.W.: Lie Groups Beyond an Introduction, Progress in Mathematics, vol. 140, 2nd edn. Birkhäuser Boston Inc., Boston, MA (2002)

    Google Scholar 

  31. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. II, Wiley Classics Library. Wiley, New York (1996). Reprint of the 1969 original; A Wiley-Interscience Publication

  32. Nagy P.-A.: Nearly Kähler geometry and Riemannian foliations. Asian J. Math. 6(3), 481–504 (2002)

    MATH  MathSciNet  Google Scholar 

  33. Nagy P.-A.: On nearly-Kähler geometry. Ann. Glob. Anal. Geom. 22(2), 167–178 (2002). doi:10.1023/A:1019506730571

    Article  MATH  Google Scholar 

  34. O’Brian N.R., Rawnsley J.H.: Twistor spaces. Ann. Glob. Anal. Geom. 3(1), 29–58 (1985). doi:10.1007/BF00054490

    Article  MATH  MathSciNet  Google Scholar 

  35. Ohnita, Y., Udagawa, S.: Complex-analyticity of pluriharmonic maps and their constructions. In: Prospects in Complex Geometry (Katata and Kyoto, 1989). Lecture Notes in Mathematics, vol. 1468, pp. 371–407. Springer, Berlin (1991). doi:10.1007/BFb0086201

  36. Ohnita Y., Valli G.: Pluriharmonic maps into compact Lie groups and factorization into unitons. Proc. Lond. Math. Soc. (3) 61(3), 546–570 (1990). doi:10.1112/plms/s3-61.3.546

    Article  MATH  MathSciNet  Google Scholar 

  37. Rawnsley, J.H.: f-structures, f-twistor spaces and harmonic maps. In: Geometry Seminar “Luigi Bianchi” II-1984. Lecture Notes in Mathematics, vol. 1164, pp. 85–159. Springer, Berlin (1985). doi:10.1007/BFb0081911

  38. Salamon S.: Quaternionic Kähler manifolds. Invent. Math. 67(1), 143–171 (1982). doi:10.1007/BF01393378

    Article  MATH  MathSciNet  Google Scholar 

  39. Schäfer L.: tt*-geometry and pluriharmonic maps. Ann. Glob. Anal. Geom. 28(3), 285–300 (2005). doi:10.1007/s10455-005-7947-2

    Article  MATH  Google Scholar 

  40. Schäfer L.: tt*-geometry on the tangent bundle of an almost complex manifold. J. Geom. Phys. 57(3), 999–1014 (2007). doi:10.1016/j.geomphys.2006.08.004

    Article  MATH  MathSciNet  Google Scholar 

  41. Schäfer, L., Schulte-Hengesbach, F.: Nearly pseudo-Kähler and nearly para-Kähler six-manifolds. In: Handbook of pseudo-Riemannian geometry and supersymmetry, IRMA Lect. Math. Theor. Phys., vol. 16, pp. 425–453. Eur. Math. Soc., Zürich (2010). doi:10.4171/079-1/12

  42. Strominger A.: Superstrings with torsion. Nucl. Phys. B 274(2), 253–284 (1986). doi:10.1016/0550-3213(86)90286-5

    Article  MathSciNet  Google Scholar 

  43. Uhlenbeck K.: Harmonic maps into Lie groups: classical solutions of the chiral model. J. Differ. Geom. 30(1), 1–50 (1989)

    MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars Schäfer.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schäfer, L. Integrability of generalized pluriharmonic maps. manuscripta math. 146, 473–493 (2015). https://doi.org/10.1007/s00229-014-0714-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-014-0714-6

Mathematics Subject Classification

Navigation