Skip to main content
Log in

Regularity theory for nonlinear systems of SPDEs

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We consider systems of stochastic evolutionary equations of the type

$$d{\bf u} = {\rm div}\,{\bf S}(\nabla {\bf u})\,dt + \Phi({\bf u})d{\bf W}_t$$

where S is a non-linear operator, for instance the p-Laplacian

$${\bf S}(\mathbf{\xi}) = (1 + |\mathbf{\xi}|)^{p-2} \mathbf{\xi}, \quad \mathbf{\xi} \in \mathbb{R}^{d \times D},$$

with \({p \in (1, \infty)}\) and Φ grows linearly. We extend known results about the deterministic problem to the stochastic situation. First we verify the natural regularity:

$$\mathbb{E}\bigg[\mathop{\sup}\limits_{t \in (0, T)} \int_{G'}|\nabla{\bf u}(t)|^2\,dx + \int_0^T \int_{G'}|\nabla{\bf F}(\nabla{\bf u})|^2\,dx\,dt\bigg] < \infty,$$

where \({{\bf F}(\mathbf{\xi}) = (1 + |\mathbf{\xi}|)^{\frac{p-2}{2}} \mathbf{\xi}}\) . If we have Uhlenbeck-structure then \({\mathbb{E}\big[\|\nabla{\bf u}\|_q^q\big]}\) is finite for all \({q < \infty}\) if the same is true for the initial data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi, E., Fusco, N.: Regularity for minimizers of nonquadratic functionals: the case 1<p<2. J. Math. Anal. Appl. 140(1), 115–135 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Amann, H.: Compact embeddings of vector-valued Sobolev and Besov spaces. Glass. Math. III. Ser. 35(55), 161–177 (2000)

    MATH  MathSciNet  Google Scholar 

  3. Arnold, L.: Stochastic Differential Equations: Theory and Applications. Wiley, New York (1973)

    Google Scholar 

  4. Beck, L., Flandoli, F.: Random perturbations of nonlinear parabolic systems. J. Evol. Equ. 13, 829–874 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bensoussan, A., Temam, R.: Équations stochastiques du type Navier–Stokes. J. Funct. Anal. (French) 13, 195–222 (1973)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bildhauer, M.: Convex Variational Problems: Linear, Nearly Linear and Anisotropic Growth Conditions. Lecture Notes in Mathematics 1818. Springer, Berlin (2003)

    Book  Google Scholar 

  7. Bildhauer, M., Fuchs, M.: Differentiability and higher integrability results for local minimizers of splitting type variational integrals in 2D with applications to nonlinear Hencky materials. Calc. Var. 37(1-2), 167–186 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Breit, D.: The partial regularity for minimizers of splitting type variational integrals under general growth conditions II: the nonautonomous case. J. Math. Sci. 166(3), 259–281 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Breit, D.: Analysis of generalized Navier–Stokes equations for stationary shear thickening flows. Nonlinear Anal. 75, 5549–5560 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  10. Breit, D., Diening, L., Schwarzacher, S.: Solenoidal Lipschitz truncation for parabolic PDE’s. Math. Mod. Meth. Appl. Sci. 23, 2671–2700 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  11. Chen, J., Chen, Z.-M.: Stochastic non-Newtonian fluid motion equations of a nonlinear bipolar viscous fluid. J. Math. Anal. Appl. 369(2), 486–509 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  12. Da Prato, G., Zabczyk, J.: Stochastic Equations in Infinite Dimensions. Encyclopedia of Mathematics and its Applications, vol. 44. Cambridge University Press, Cambridge (1992)

    Book  Google Scholar 

  13. Debussche, A., Hofmanová, M., Vovelle, J.: Degenerate parabolic stochastic partial differential equations: Quasilinear case. Preprint at arXiv:1309.5817 (2013)

  14. Denis, L., Matoussi, A., Stoica, L.: Moser iteration applied to parabolic SPDE’s: first approach. In: Stochastic Partial Differential Equations and Applications, Quaderni di Matematica del Dipartimento di Matematica della Seconda Universitá di Napoli, vol. 25, pp. 99–125. Caserta (2010)

  15. Denis, L., Matoussi, A., Stoica, L.: Maximum principle and comparison theorem for quasi-linear stochastic PDE’s. Electron. J. Probab. 14(19), 500–530 (2009)

    MATH  MathSciNet  Google Scholar 

  16. Denis, L., Matoussi, A., Stoica, L.: L p estimates for the uniform norm of solutions of quasilinear SPDE’s. Probab. Theory Relat. Fields 133(4), 437–463 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  17. DiBenedetto, E., Friedmann, A.: Regularity of solutions of nonlinear degenerate parabolic systems. J. Reine Angew. Math. 349, 83–128 (1984)

    MATH  MathSciNet  Google Scholar 

  18. Duzaar, F., Mingione, G.: Second order parabolic systems, optimal regularity, and singular sets of solutions. Ann. Inst. Henri Poincaré, Anal. Non Linéaire 22, 705–751 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  19. Duzaar, F., Mingione, R., Steffen, K.: Parabolic systems with polynomial growth and regularity. Memoirs of the American Mathematical Society, vol. 214, no. 1005. American Mathematical Society, Providence, RI (2011)

  20. Diening, L., Růžička, M., Wolf, J.: Existence of weak solutions for unsteady motions of generalized Newtonian fluids. Ann. Sc. Norm. Sup. Pisa Cl. Sci. (5) IX, 1–46 (2010)

  21. Flandoli, F.: Dirichlet boundary value problem for stochastic parabolic equations: compatibility relations and regularity of solutions. Stoch. Int. J. Probab. Stoch. Process. 29(3), 331–357 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  22. Friedman, A.: Stochastic Differential Equations and Applications I. Academic Press, New York (1975)

    Google Scholar 

  23. Friedman, A.: Stochastic Differential Equations and Applications II. Academic Press, New York (1976)

    Google Scholar 

  24. Giaquinta, M.: Multiple integrals in the calculus of variations and nonlinear elliptic systems. Ann. Math. Stud., vol. 105. Princeton University Press, Princeton, NJ (1983)

  25. Giusti, E.: Direct Methods in the Calculus of Variations. World Scientific, Singapore (2003)

    Book  MATH  Google Scholar 

  26. Gilbarg, D., Trudinger, N.S.: Elliptic Partial Differential Equations of Second Order. Springer, Berlin (2001)

    MATH  Google Scholar 

  27. Hofmanová, M.: Degenerate parabolic stochastic partial differential equations. Stoch. Process. Appl. 123(12), 4294–4336 (2013)

    Article  MATH  Google Scholar 

  28. Hofmanová, M.: Strong solutions of semilinear stochastic partial differential equations. nNonlinear Differ. Equ. Appl. 20(3), 757–778 (2013)

    Article  MATH  Google Scholar 

  29. Hofmanová, M., Seidler, J.: On weak solutions of stochastic differential equations. Stoch. Anal. Appl. 30(1), 100–121 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  30. Ikeda, N., Watanabe, S.: Stochastic Differential Equations and Diffusion Processes, 2nd edn. North-Holland Mathematical Library 24, North-Holland (1989)

    MATH  Google Scholar 

  31. Krylov, N. V.: A W n, 2-theory of the Dirichlet problem for SPDEs in general smooth domains. Probab. Theory Relat. Fields 98(3), 389–421 (1994)

    Article  MATH  Google Scholar 

  32. Krylov, N.V., Rozovskii, B.L.: On the Cauchy problem for linear stochastic partial differetial equations. Izv. Akad. Nauk. SSSR Ser. Mat. 41(6), 1329–1347, English transl. Math. USSR Izv. 11 (1977)

  33. Krylov, N. V., Rozovskii, B. L.: Stochastic evolution equations. Itogi Nauki i Tekhniki. Ser. Sovrem. Probl. Mat. 14, VINITI, Moscow, 71–146, English transl. J. Sov. Math. 16(4) (1981), 1233–1277 (1979)

  34. Ladyzhenskaya, O.A., Solonnikov, V.A., Ural’tseva, N.N.: Linear and quasi-linear equations of parabolic type. Translations of Mathematical Monographs, vol. 23. Am. Math. Soc., Providence, RI (1967)

  35. Liu, W., Röckner, M.: SPDE in Hilbert space with locally monotone coefficients. J. Funct. Anal. 256, 2902–2922 (2010)

    Article  Google Scholar 

  36. Mingione, G.: Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51(4), 355–426 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  37. Málek, J., Nečas, J., Rokyta, M., Růžička, M.: Weak and Measure Valued Solutions to Evolutionary PDEs. Chapman & Hall, London (1996)

    Book  MATH  Google Scholar 

  38. Pardoux, E.: Equations aux dérivées Partielles stochastiques non linéaires monotones. Etude de solutions fortes de type Itô, Ph.D. thesis, Université Paris Sud (1975)

  39. Prévôt, C., Röckner, M.: A Concise Course on Stochastic Partial Differential Equations. Lecture Notes in Mathematics, 1905. Springer, Berlin (2007)

    Google Scholar 

  40. Rozovskii, B.L.: Stochastic evolution systems. In: Linear Theory and Applications to Non-linear Filtering, Mathematics and its Applications (Soviet Series), vol. 35. Kluwer Academic Publishers, Dordrecht. p. xviii (1990)

  41. Terasawa, Y., Yoshida, N.: Stochastic power-law fluids: existence and uniqueness of weak solutions. Ann. Appl. Probab. 21(5), 1827–1859 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  42. Uhlenbeck, K.: Regularity for a class of non-linear elliptic systems. Acta Math. 138, 219–240 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  43. Wiegner, M.: On C α-regularity of the gradient of solutions of degenerate parabolic systems. Ann. Mat. Pura Appl. (IV) 145, 385–405 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  44. Zhang, X.: Smooth solutions of non-linear stochastic partial differential equations driven by multiplicative noises. Sci. China Math. 53, 2949–2972 (2010)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dominic Breit.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Breit, D. Regularity theory for nonlinear systems of SPDEs. manuscripta math. 146, 329–349 (2015). https://doi.org/10.1007/s00229-014-0704-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-014-0704-8

Mathematics Subject Classification

Navigation