Skip to main content
Log in

Automorphism group of Batyrev Calabi–Yau threefolds

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

In this paper, we will prove that all Batyrev Calabi–Yau threefolds, arising from a crepant resolution of a generic hyperplane section of a toric Fano–Gorenstein fourfold, have finite automorphism group. Together with the Morrison conjecture, this suggests that all Batyrev Calabi–Yau threefolds should have a polyhedral Kähler (ample) cone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Batyrev V.: Dual polyhedra and mirror symmetry for Calabi–Yau hypersurfaces in toric varieties. J. Algebr. Geom. 3(3), 493–535 (1994)

    MathSciNet  MATH  Google Scholar 

  2. Batyrev, V., Borisov, L.: On Calabi–Yau complete intersections in toric varieties. Higher-dimensional complex varieties (Trento, 1994), pp. 39–65, de Gruyter, Berlin (1996)

  3. Batyrev V., Cox D.A.: On the Hodge structure of projective hypersurfaces in toric varieties. Duke Math. J. 75(2), 29–338 (1994)

    Article  MathSciNet  Google Scholar 

  4. Borcea C.: On desingularized Horrocks–Mumford quintics. J. Reine Angew. Math 421, 23–24 (1991)

    MathSciNet  MATH  Google Scholar 

  5. Borcea, C.: Homogeneous vector bundles and families of Calabi–Yau threefolds, II. Several complex variables and complex geometry, Part 2 (Santa Cruz, CA, 1989), 83–91, Proceedings of Symposium Pure Mathematics, 52, Part 2.

  6. Candelas P., de la Ossa X., Green P., Parkes L.: A pair of Calabi–Yau manifolds as an exactly soluble superconformal theory. Nucl. Phys. B 359(1), 21–74 (1991)

    Article  MATH  Google Scholar 

  7. Danilov V.I., Khovanskii A.G.: Newton polyhedra and an algorithm for computing Hodge–Deligne numbers. Izv. Akad. Nauk SSSR Ser. Mat 50(5), 925–945 (1986)

    MathSciNet  Google Scholar 

  8. GrassiA., Morrison D.R.: Automorphisms and the Kähler cone of certain Calabi–Yau manifolds. Duke Math. J. 71(3), 831–838 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kovács S.J.: The cone of curves of K3 surfaces. Math. Ann. 300, 681–691 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  10. Miyaoka, Y.: The Chern class and Kodaira dimension of a minimal variety. Adv. Stud. Pure Math. 10, 449–476

  11. Morrison, D.R.: Compactifications of moduli spaces inspired by mirror symmetry. Journes de Gomtrie Algbrique d’Orsay (Orsay, 1992). Astrisque 218, 243–271 (1993)

  12. Wilson P.M.H.: The Kähler cone on Calabi–Yau threefolds. Invent. Math. 107, 561–583 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  13. Wilson, P.M.H.: The role of c 2 in the Calabi–Yau classification. Mirror symmetry, II, 381–392, AMS/IP Stud. Adv. Math., 1, American Mathematical Society, Providence, RI (1997)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Farajzadeh Tehrani.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tehrani, M.F. Automorphism group of Batyrev Calabi–Yau threefolds. manuscripta math. 146, 299–306 (2015). https://doi.org/10.1007/s00229-014-0688-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-014-0688-4

Mathematics Subject Classification (2000)

Navigation