Skip to main content
Log in

Derivatives of Siegel modular forms and modular connections

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We introduce a method in differential geometry to study the derivative operators of Siegel modular forms. By determining the coefficients of the invariant Levi–Civita connection on a Siegel upper half plane, and further by calculating the expressions of the differential forms under this connection, we get a non-holomorphic derivative operator of the Siegel modular forms. In order to get a holomorphic derivative operator, we introduce a weaker notion, called modular connection, on the Siegel upper half plane. Then we show that on a Siegel upper half plane there exists at most one holomorphic \({{\rm Sp}(2g, {\mathbb {Z}})}\)-modular connection in some sense, and get a possible holomorphic derivative operator of Siegel modular forms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andrianov A.: Introduction to Siegel Modular Forms and Dirichlet Series. Springer, New York (2009)

    Book  MATH  Google Scholar 

  2. Böcherer S.: Bilinear holomorphic differential operators for the Jacobi group. Comm. Math. Univ. Sancti Pauli 47, 135–154 (1998)

    MATH  Google Scholar 

  3. Böcherer, S., Das, S.: On holomorphic differential operators equivariant for the inclusion of \({{\rm Sp}(n, \mathbb{R})}\) in U(n, n). In:International Mathematics Research Notices, published online, doi:10.1093/imrn/rns116

  4. Bump D.: Automorphic Forms and Representations, Cambridge Studies in Advanced Mathematics 55. Cambridge University Press, Cambridge (1997)

    Book  Google Scholar 

  5. Chern S.S., Chen W.H., Lam K.S.: Lectures on Differential Geometry. World Scientific, Singapore (1999)

    Book  MATH  Google Scholar 

  6. Eholzer W., Ibukiyama T.: Rankin–Cohen type differential operators for Siegel modular forms. Int. J. Math. 9, 443–463 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Goldfeld D.: Automorphic forms and L-functions for the group \({GL(n, \mathbb{R})}\). Cambridge Studies in Advanced Mathematics 99. Cambridge University Press, Cambridge (2006)

    Google Scholar 

  8. Harris M.: Maass operators and Eisenstein series. Math. Ann. 258, 135–144 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ibukiyama T.: On differential operators on automorphic forms and invariant pluri-harmonic polynomials, Comm. Math. Univ. Sancti. Pauli 48, 103–118 (1999)

    MathSciNet  MATH  Google Scholar 

  10. Jost J.: Riemannian Geometry and Geometric Analysis. Springer (Universitext), Berlin (1988)

    Google Scholar 

  11. Koblitz N.: Introduction to Elliptic curves and Modular Forms. Springer, New York (1984)

    Book  MATH  Google Scholar 

  12. Maass, H.: Lectures on Siegel’s Modular Functions, Tate Institute of Fundamental Research, Bombay (1955)

  13. Maass H.: Siegel’s Modular Forms and Dirichlet Series. LNM 216, Berlin (1971)

    MATH  Google Scholar 

  14. Paradan, P.-E.: Symmetric Spaces of the Non-compact Type: Lie Groups, http://math.univ-lyon1.fr/~emy/smf_sec_18_02

  15. Shimura G.: Arithmetic of Differential Operators on Symmetric Domains. Duke Math. J. 48, 813–843 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Geer G. van der: Siegel modular forms and their applications. In: Ranestad, K. (ed.) The 1-2-3 of Modular Forms : Lectures at a Summer School in Nordfjordeid, Norway., pp. 181–245. Universitext, Springer, Berlin (2008)

  17. Weissauer R.: Vektorwertige Siegelsche Modulformen Kleinen Gewichtes. J. Reine Angew. Math. 343, 184–202 (1983)

    MathSciNet  MATH  Google Scholar 

  18. Weissauer, R.: Divisors of the Siegel Modular Variety. pp. 304–324. LNM 1240, Berlin (1987)

  19. Yang, J., Yin, L.S.: Derivation of Jacobi forms from connetions. arXiv:1301.1156

  20. Zagier D.: Elliptic modular forms and their applications. In: Ranestad, K. (ed.) The 1-2-3 of Modular Forms: Lectures at a Summer School in Nordfjordeid, Norway, Universitext, pp. 1–103. Springer, Berlin (2008)

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enlin Yang.

Additional information

This paper was partially supported by NSFC No. 11271212.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, E., Yin, L. Derivatives of Siegel modular forms and modular connections. manuscripta math. 146, 65–84 (2015). https://doi.org/10.1007/s00229-014-0687-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-014-0687-5

Mathematics Subject Classification (2000)

Navigation