Skip to main content
Log in

Systems of variational inequalities for non-local operators related to optimal switching problems: existence and uniqueness

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

In this paper we study viscosity solutions to the system

$$\begin{array}{ll} \min \{ -\mathcal{H}u_i(x,t)-\psi _i(x,t),u_i(x,t) - \max_{j \neq i} (-c_{i ,j} (x,t) + u_j (x,t)) \} = 0,\\ u_i(x,T)=g_i (x), \, i \in \{1,\ldots , d \},\end{array}$$

where \({(x,t)\in{\mathbb{R}}^{N} \times [0,T]}\). Concerning \({{\mathcal{H}}}\), we assume that \({{\mathcal{H}}={\mathcal{L}}+{\mathcal{I}}}\) where \({{\mathcal{L}}}\) is a linear, possibly degenerate, parabolic operator of second order and \({{\mathcal{I}}}\) is a non-local integro-partial differential operator. A special case of this type of system of variational inequalities with terminal data occurs in the context of optimal switching problems when the dynamics of the underlying state variables is described by an N-dimensional Levy process. We establish a general comparison principle for viscosity sub- and supersolutions to the system under mild regularity, growth and structural assumptions on the data, i.e., on the operator \({{\mathcal{H}}}\) and on the continuous functions \({\psi_i}\), c i,j , and g i . Using the comparison principle we prove the existence of a unique viscosity solution (u 1, . . . , u d ) to the system by Perron’s method. Our main contribution is that we establish existence and uniqueness of viscosity solutions, in the setting of Levy processes and non-local operators, with no sign assumption on the switching costs {c i, j } and allowing c i, j to depend on x as well as t.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Barles G., Imbert C.: Second-order elliptic integro-differential equations: viscosity solutions theory revisited. Annales de l’Institut Henri Poincaré 25, 567–585 (2008)

    MathSciNet  MATH  Google Scholar 

  2. Biswas I.H., Jakobsen E.R., Karlsen K.H.: Viscosity solutions for a system of integro-PDEs and connections to optimal switching and control of jump-diffusion processes. Appl. Math. Optimiz. 62, 47–80 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  3. Djehiche B., Hamadene S.: On a finite horizon starting and stopping problem with risk of abandonment. Int. J. Theoret. Appl. Finance 12, 523–543 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Djehiche B., Hamadene S., Popier A.: A finite horizon optimal multiple switching problem. SIAM J. Control Optimiz. 48, 2751–2770 (2010)

    Article  MathSciNet  Google Scholar 

  5. El-Asri, B., Fakhouri, I.: Optimal multi-modes switching with the switching cost not necessarily positive, arXiv:1204.1683v1, 2012

  6. El-Asri B., Hamadene S.: The finite horizon optimal multi-modes switching problem: the viscosity solution approach. Appl. Math. Optimiz. 60, 213–235 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hu Y., Tang S.: Multi-dimensional BSDE with oblique reflection and optimal switching. Prob. Theory Relat. Fields 147, 89–121 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  8. Hamadéne S., Zhang J.: Switching problem and related system of reflected backward SDEs. Stoch. Process. Appl. 120, 403–426 (2010)

    Article  MATH  Google Scholar 

  9. Ishii H., Koike S.: Viscosity solutions of a system of nonlinear second-order elliptic PDEs arising in switching games. Funkcialaj Ekvacioj 34, 143–155 (1991)

    MathSciNet  MATH  Google Scholar 

  10. Jakobsen E.R., Karlsen K.H.: A maximum principle for semicontinuous functions applicable to integro-partial differential equations. Nonlin. Differ. Equ. Appl. 13, 137–165 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Lundström, N., Nyström, K., Olofsson, M.: Systems of variational inequalities in the context of optimal switching problems and operators of Kolmogorov type. Annali. di. Mathematica (2013). doi:10.1007/s10231-013-0325-y

  12. Pham H.: Optimal stopping, free boundary, and American option pricing in a jump-diffusion model. Appl. Math. Optimiz. 35, 145–164 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcus Olofsson.

Additional information

N. L. P. Lundström and M. Olofsson were financed by Jan Wallanders och Tom Hedelius Stiftelse samt Tore Browaldhs Stiftelse through the project Optimal switching problems and their applications in economics and finance, P2010-0033:1.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lundström, N.L.P., Nyström, K. & Olofsson, M. Systems of variational inequalities for non-local operators related to optimal switching problems: existence and uniqueness. manuscripta math. 145, 407–432 (2014). https://doi.org/10.1007/s00229-014-0683-9

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-014-0683-9

Mathematics Subject Classification (2000)

Navigation