Skip to main content

Advertisement

Log in

Boundary behavior of nonnegative solutions of fully nonlinear parabolic equations

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

In this paper we consider fully nonlinear parabolic equations in \({\mathbb{R}^{n+1}}\) of the type

$$F(D^2 u, Du, x, t) = u_{t},\quad \quad \quad {(0.1)}$$

where F satisfies the structural conditions in (2.2) below, along with F(0, 0, x, t) =  0. Viscosity solutions to (0.1) are a subclass of the (viscosity) solutions to the differential inequalities in (2.5) below. Such inequalities involve the parabolic extremal Pucci operators and the class of their viscosity solutions will be denoted by the notation \({\mathcal S(\lambda, \Lambda, a)}\). The primary purpose of the present paper is studying the boundary behavior of nonnegative functions in the class \({\mathcal S(\lambda, \Lambda, a)}\). Since viscosity solutions to (0.1) are in this class, it follows that our results provide corresponding statements for nonnegative viscosity solutions to (0.1) as a special case.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Armstrong S.N., Silvestre L.: Unique continuation for fully nonlinear elliptic equations. Math. Res. Lett. 18(5), 921–926 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  2. Armstrong S.N., Sirakov B., Smart C.: Singular solutions of fully nonlinear elliptic equations and applications. Arch. Ration. Mech. Anal. 205(2), 345–394 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Banerjee, A.: A remark on a vanishing property for viscosity solutions of fully nonlinear parabolic equations. Nonlinear Anal. Methods Theory Appl. (to appear)

  4. Banerjee, A., Garofalo, N.: Gradient bounds and monotonicity of the energy for some nonlinear singular diffusion equations. Indiana Univ. Math. J. (to appear)

  5. Bauman P.: Positive solutions of elliptic equations in nondivergence form and their adjoints. Ark. Mat. 22(2), 153–173 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Berestycki H., Caffarelli L., Nirenberg L.: Inequalities for second-order elliptic equations with applications to unbounded domains. I. Duke Math. J. 81(2), 467–494 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  7. Caffarelli, L.A., Cabré, X.: Fully nonlinear elliptic equations. Am. Math. Soc. Coll. Publ. 43 (1995)

  8. Caffarelli L., Fabes E., Mortola S., Salsa S.: Boundary behavior of nonnegative solutions of elliptic operators in divergence form. Indiana Univ. Math. J. 30(4), 621–640 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  9. Crandall M., Kocan M., Swiech A.: L p-theory for fully nonlinear uniformly parabolic equations. Comm. Partial Differ. Equ. 25, 997–2053 (2000)

    Article  MathSciNet  Google Scholar 

  10. Dahlberg B.E.J.: Estimates of harmonic measure. Arch. Rational Mech. Anal. 65(3), 275–288 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  11. Does K.: An evolution equation involving the normalized p-Laplacian. Commun. Pure Appl. Anal. 10(1), 361–396 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  12. Fabes E.B., Garofalo N., Salsa S.: Comparison theorems for temperatures in noncylindrical domains. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Natur. 8, 77–112 (1984)

    MathSciNet  Google Scholar 

  13. Fabes E.B., Garofalo N., Salsa S.: A backward Harnack inequality and Fatou theorem for nonnegative solutions of parabolic equations. Ill. J. Math. 30(4), 536–565 (1986)

    MathSciNet  MATH  Google Scholar 

  14. Fabes E.B., Safonov M.V.: Behavior near boundary of positive solutions of second order parabolic equations. J. Fourier Anal. Appl. Special Issue: Proc. Conf. El Escorial 96(3), 871–882 (1997)

    Article  MathSciNet  Google Scholar 

  15. Fabes E., Safonov M., Yuan Y.: Behavior near the boundary of positive solutions of second order parabolic equations. II. Trans. Am. Math. Soc. 351, 4947–4961 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  16. Garofalo N.: Second order parabolic equations in nonvariational forms: boundary Harnack principle and comparison theorems for nonnegative solutions. Ann. Mat. Pura Appl. 4(138), 267–296 (1984)

    Article  MathSciNet  Google Scholar 

  17. Giga Y., Goto S., Ishii H., Sato M.: Comparison principle and convexity preserving properties for singular degenerate parabolic equations on unbounded domains. Indiana Univ. Math. J. 40, 443–470 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  18. Jerison D.S., Kenig C.E.: Boundary behavior of harmonic functions in nontangentially accessible domains. Adv. Math. 46(1), 80–147 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Kemper J.T.: Temperatures in several variables: Kernel functions, representations, and parabolic boundary values. Trans. Am. Math. Soc. 167, 243–262 (1972)

    Article  MathSciNet  MATH  Google Scholar 

  20. Lieberman, G.: Second Order Parabolic Differential Equations. World Scientific, River Edge, xii+439 pp (1996). ISBN: 981-02-2883-X

  21. Manfredi J.J., Parviainen M., Rossi J.D.: An asymptotic mean value characterization for a class of nonlinear parabolic equations related to tug of war games. SIAM J. Math Anal. 42, 2058–2081 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  22. Miller K.: Barriers on cones for uniformly elliptic operators. Ann. Mat. Pura Appl. 4(76), 93–105 (1967)

    Article  Google Scholar 

  23. Safonov M.V., Yuan Y.: Doubling properties for second order parabolic equations. Ann. Math. (2) 150(1), 313–327 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  24. Salsa S.: Some properties of nonnegative solutions of parabolic differential operators. Ann. Mat. Pura Appl. 4(128), 193–206 (1981)

    Article  MathSciNet  Google Scholar 

  25. Wang L.: On the regularity theory of fully nonlinear parabolic equations: I. Comm. Pure Appl. Math. 45, 27–76 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Wu J.M.G.: Comparisons of kernel functions, boundary Harnack principle and relative Fatou theorem on Lipschitz domains. Ann. Inst. Fourier (Grenoble) 28(4), 147–167 (1978)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nicola Garofalo.

Additional information

First author supported in part by the second author’s NSF Grant DMS-1001317, and in part by the second author’s Purdue Research Foundation Grant “Gradient bounds, monotonicity of the energy for some nonlinear singular diffusion equations, and unique continuation”, 2012.

Second author supported in part by NSF Grant DMS-1001317.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Banerjee, A., Garofalo, N. Boundary behavior of nonnegative solutions of fully nonlinear parabolic equations. manuscripta math. 146, 201–222 (2015). https://doi.org/10.1007/s00229-014-0682-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-014-0682-x

Mathematics Subject Classification

Navigation