Advertisement

Manuscripta Mathematica

, Volume 144, Issue 3–4, pp 421–438 | Cite as

Tate conjecture for products of Fermat varieties over finite fields

  • Rin SugiyamaEmail author
Article
  • 126 Downloads

Abstract

We prove under some assumptions that the Tate conjecture holds for products of Fermat varieties of different degrees. The method is to use a combinatorial property of eigenvalues of geometric Frobenius acting on -adic étale cohomology.

Mathematics Subject Classification (2010)

14G15 11G25 14H52 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Bass, H.: Some problems in “classical” algebraic K-theory. “Classical” Algebraic K-Theory, and Connections with Arithmetic (Proc. Conf., Seattle, Battelle Memorial Inst., 1972) Lecture Notes in Math., vol. 342, pp. 1–73. Springer, Berlin (1973)Google Scholar
  2. 2.
    Báyer P., Neukirch J.: On values of zeta functions and ℓ-adic Euler characteristics. Invent. Math. 50, 35–64 (1978)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Beilinson A.A.: Height pairings between algebraic cycles. In: Manin, Yu.I. (ed.) K-Theory, Arithmetic and Geometry, Lecture Notes in Math., vol. 1289, pp. 1–27. Springer, Berlin (1987)Google Scholar
  4. 4.
    Bloch S.: Algebraic cycles and higher K-theory. Adv. Math. 64, 267–304 (1986)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Colliot-Thélène J.-L., Sansuc J.-J., Soulé C.: Torsion dans le groupe de Chow de codimension deux. Duke Math. J. 50, 763–801 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Deligne P.: La conjecture de Weil I. Publ. Math. Inst. Hautes Étude Sci. 43, 273–308 (1974)CrossRefMathSciNetGoogle Scholar
  7. 7.
    Fulton, W.: Intersection Theory, 2nd ed. Ergeb. Math. Grenzgeb. (3)2. Springer, Berlin (1998)Google Scholar
  8. 8.
    Friedlander E.M., Suslin A.: The spectral sequence relating algebraic K-theory to motivic cohomology. Ann. Sci. École Norm. Sup. (4) 35(6), 773–875 (2002)zbMATHMathSciNetGoogle Scholar
  9. 9.
    Geisser T.: Tate’s conjecture, algebraic cycles and rational K-theory in characteristic p. K-theory 13, 109–122 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Geisser T., Levine M.: The K-theory of fields in characteristic p. Invent. Math. 139, 459–493 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Grothendieck A.: Cohomologie ℓ-adique et Fonctions L. Lecture Notes in Math, vol. 589. Springer, Berlin (1977)Google Scholar
  12. 12.
    Illusie L.: Complexe de De Rham-Witt et cohomologie cristalline. Ann. Sci. École Norm. Sup. (4) 12, 501–661 (1979)zbMATHMathSciNetGoogle Scholar
  13. 13.
    Jannsen U.: Continuous Étale cohomology. Math. Ann. 280, 207–245 (1988)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Kahn B.: Équivalences rationnelle et numérique sur certaines variétés de type Abélien sur un corps fini. Ann. Sci. École. Norm. Sup. (4) 36, 977–1002 (2003)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Kimura S.: Chow groups are finite dimensional, in some sense. Math. Ann. 331, 173–201 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Kohmoto, D.: A generalization of the Artin–Tate formula for fourfolds. J. Math. Sci. Univ. Tokyo 17(2010)(4), 419–453 (2011)Google Scholar
  17. 17.
    Lichtenbaum, S.: Values of zeta functions at non-negative integers. In: Number theory, Noordwijkerhout 1983, Lecture Notes in Math., vol. 1068, pp. 127–138. Springer, Berlin (1984)Google Scholar
  18. 18.
    Milne J.S.: Values of zeta functions of varieties over finite fields. Am. J. Math. 108, 297–360 (1986)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Shioda T., Katsura T.: On Fermat varieties. Tôhoku J. Math. 31, 97–115 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Shioda T.: The Hodge conjecture and the Tate conjecture for Fermat varieties. Proc. Jpn. Acad. 55, 111–114 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Shioda T.: The Hodge conjecture for Fermat varieties. Math. Ann. 245, 175–184 (1979)CrossRefzbMATHMathSciNetGoogle Scholar
  22. 22.
    Shioda, T.: Some observations on Jacobi sums. Advanced Studies in Pure Math., vol. 12, pp. 119–135. North Holland, Kinokuniya (1987)Google Scholar
  23. 23.
    Schneider P.: On the values of the zeta function of a variety over a finite field. Comp. Math. 46, 133–143 (1982)zbMATHGoogle Scholar
  24. 24.
    Soulé C.: Groupes de Chow et K-théorie de variétés sur un corps fini. Math. Ann. 268, 317–345 (1984)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Spiess M.: Proof of the Tate conjecture for products of elliptic curves over finite fields. Math. Ann. 314, 285–290 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Tate, J.: Algebraic cycles and poles of zeta-functions. In: Arithmetical Algebraic Geometry, pp. 93–110. Harper and Row, New York (1965)Google Scholar
  27. 27.
    Tate J.: Endomorphisms of abelian varieties over finite fields. Invent. Math. 2, 134–144 (1966)CrossRefzbMATHMathSciNetGoogle Scholar
  28. 28.
    Tate J.: Conjectures on algebraic cycles in ℓ-adic cohomology. Proc. Symp. Pure Math. 55(1), 71–83 (1994)CrossRefMathSciNetGoogle Scholar
  29. 29.
    Weil A.: Number of solutions of equations in finite fields. Bull. Am. Math. Soc. 55, 497–508 (1949)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Fakultät MathematikUniversität Duisburg-EssenEssenGermany

Personalised recommendations