Advertisement

Manuscripta Mathematica

, Volume 144, Issue 3–4, pp 373–400 | Cite as

Cohomology of locally closed semi-algebraic subsets

  • Florent MartinEmail author
Article

Abstract

Let k be a non-Archimedean field, let be a prime number distinct from the characteristic of the residue field of k. If χ is a separated k-scheme of finite type, Berkovich’s theory of germs allows to define étale -adic cohomology groups with compact support of locally closed semi-algebraic subsets of χ an . We prove that these vector spaces are finite dimensional continuous representations of the Galois group of k sep /k, and satisfy the usual long exact sequence and Künneth formula. This has been recently used by E. Hrushovski and F. Loeser in a paper about the monodromy of the Milnor fibration. In this statement, the main difficulty is the finiteness result, whose proof relies on a cohomological finiteness result for affinoid spaces, recently proved by V. Berkovich.

Mathematics Subject Classification

14F20 14G22 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Berkovich, V.G.: Spectral Theory and Analytic Geometry Over Non-Archimedean Fields. American Mathematical Society, Providence, RI (1990)Google Scholar
  2. 2.
    Berkovich V.G.: Etale cohomology for non-Archimedean analytic spaces. Publ. Math. de l’IHÉS 78(1), 5–161 (1993)CrossRefzbMATHGoogle Scholar
  3. 3.
    Berkovich V.G.: Vanishing cycles for formal schemes. Invent. Math. 115(1), 539–571 (1994)CrossRefzbMATHMathSciNetGoogle Scholar
  4. 4.
    Berkovich, V.G: Vanishing cycles for formal schemes III. http://www.wisdom.weizmann.ac.il/vova/FormIII_2013.pdf (2013)
  5. 5.
    Conrad B.: Deligne’s notes on Nagata compactifications. J. Ramanujan Math. Soc. 22(3), 205–257 (2007)zbMATHMathSciNetGoogle Scholar
  6. 6.
    Ducros A.: Parties semi-algébriques d’une variété algébrique p-adique. Manuscr. Math. 111(4), 513–528 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Freitag, E., Kiehl, R.: Étale cohomology and the Weil conjecture, volume 13 of Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)]. Springer, Berlin, 1988. Translated from the German by Betty S. Waterhouse and William C. Waterhouse, With an historical introduction by J. A. DieudonnéGoogle Scholar
  8. 8.
    Hrushovski, E., Loeser, F.: Monodromy and the Lefschetz fixed point formula. ArXiv: 1111.1954 (2011)Google Scholar
  9. 9.
    Huber, R.: Étale Cohomology of Rigid Analytic Varieties and Adic Spaces. Aspects of Mathematics, E30. Friedr. Vieweg and Sohn, Braunschweig (1996)Google Scholar
  10. 10.
    Huber R.: A finiteness result for the compactly supported cohomology of rigid analytic varieties. II. Ann. Inst. Fourier (Grenoble) 57(3), 973–1017 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  11. 11.
    Lipshitz, L., Robinson, Z.: Flattening and analytic continuation of affinoid morphisms. Remarks on a paper of T. S. Gardener and H. Schoutens: “Flattening and subanalytic sets in rigid analytic geometry” [Proc. London Math. Soc. (3) 83(3), 681–707 (2001); mr1851087]. Proc. London Math. Soc. (3), 91(2), 443–458 (2005)Google Scholar
  12. 12.
    Martin, F.: Overconvergent constructible subsets in the framework of Berkovich spaces. ArXiv:1211.6684, (2012)Google Scholar
  13. 13.
    Milne J.S.: Étale Cohomology, volume 33 of Princeton Mathematical Series. Princeton University Press, Princeton (1980)Google Scholar
  14. 14.
    Schoutens H.: Rigid subanalytic sets. Compos. Math. 94(3), 269–295 (1994)zbMATHMathSciNetGoogle Scholar
  15. 15.
    Weibel C.A.: An Introduction to Homological Algebra, Volume 38 of Cambridge Studies in Advanced Mathematics. Cambridge University Press, Cambridge (1994)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Laboratoire Paul PainlevéUniversité de Lille 1Villeneuve d’AscqFrance

Personalised recommendations