Skip to main content
Log in

Separating invariants for arbitrary linear actions of the additive group

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We consider an arbitrary representation of the additive group \({\mathbb{G}_a}\) over a field of characteristic zero and give an explicit description of a finite separating set in the corresponding ring of invariants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Brouwer, A.: http://www.win.tue.nl/~aeb/math/invar.html

  2. Derksen H.: Computation of invariants for reductive groups. Adv. Math. 141(2), 366–384 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  3. Derksen, H., Kemper, G.: Computational invariant theory. Gamkrelidze, R.V., Popov, V.L. (eds.) Invariant Theory and Algebraic Transformation Groups, I. Encyclopaedia of Mathematical Sciences, vol. 130. Springer, Berlin (2002)

  4. Derksen H., Kemper G.: Computing invariants of algebraic groups in arbitrary characteristic. Adv. Math. 217(5), 2089–2129 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  5. Domokos M., Szabó E.: Helly dimension of algebraic groups. J. Lond. Math. Soc. (2) 84(1), 19–34 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  6. Elmer J., Kohls M.: Separating invariants for the basic \({\mathbb{G}_{a}}\) -actions. Proc. Am. Math. Soc. 140(1), 135–146 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Fleischmann P.: The Noether bound in invariant theory of finite groups. Adv. Math. 156(1), 23–32 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  8. Fogarty, J.: On Noether’s bound for polynomial invariants of a finite group. Electron. Res. Announc. Am. Math. Soc. 7: 5–7; (electronic) (2001)

    Google Scholar 

  9. Hilbert, D.: Theory of Algebraic Invariants. Cambridge University Press, Cambridge (1993). Translated from the German and with a preface by Reinhard C. Laubenbacher, Edited and with an introduction by Bernd Sturmfels

  10. Kemper G.: Calculating invariant rings of finite groups over arbitrary fields. J. Symb. Comput. 21(3), 351–366 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  11. Kemper G.: Computing invariants of reductive groups in positive characteristic. Transform. Groups 8(2), 159–176 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Khoury J.: A Groebner basis approach to solve a conjecture of Nowicki. J. Symb. Comput. 43(12), 908–922 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  13. Nagata M.: On the 14-th problem of Hilbert. Am. J. Math. 81, 766–772 (1959)

    Article  MATH  MathSciNet  Google Scholar 

  14. Nowicki A.: Polynomial Derivations and Their Rings of Constants. Uniwersytet Mikołaja Kopernika, Toruń (1994)

    MATH  Google Scholar 

  15. Olver P.J.: Classical Invariant Theory, Volume 44 of London Mathematical Society Student Texts. Cambridge University Press, Cambridge (1999)

    Book  Google Scholar 

  16. Richman D.R.: On vector invariants over finite fields. Adv. Math. 81(1), 30–65 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  17. Roberts M.: On the covariants of a binary quantic of the nth degree. Q. J. Pure Appl. Math. 4, 168–178 (1861)

    Google Scholar 

  18. van den Essen A.: An algorithm to compute the invariant ring of a G a -action on an affine variety. J. Symb. Comput. 16(6), 551–555 (1993)

    Google Scholar 

  19. Wehlau, D.: Weitzenböck derivations of nilpotency 3. Forum Math. (2011). doi:10.1515/forum-2011-0038

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Müfit Sezer.

Additional information

Müfit Sezer is supported by a grant from TÜBITAK: 112T113.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dufresne, E., Elmer, J. & Sezer, M. Separating invariants for arbitrary linear actions of the additive group. manuscripta math. 143, 207–219 (2014). https://doi.org/10.1007/s00229-013-0625-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-013-0625-y

Mathematics Subject Classification (1991)

Navigation