Skip to main content

Advertisement

Log in

Quermassintegrals of quasi-concave functions and generalized Prékopa–Leindler inequalities

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We extend to a functional setting the concept of quermassintegrals, well-known within the Minkowski theory of convex bodies. We work in the class of quasi-concave functions defined on the Euclidean space, and with the hierarchy of their subclasses given by α-concave functions. In this setting, we investigate the most relevant features of functional quermassintegrals, and we show they inherit the basic properties of their classical geometric counterpart. As a first main result, we prove a Steiner-type formula which holds true by choosing a suitable functional equivalent of the unit ball. Then we establish concavity inequalities for quermassintegrals and for other general hyperbolic functionals, which generalize the celebrated Prékopa–Leindler and Brascamp–Lieb inequalities. Further issues that we transpose to this functional setting are integral-geometric formulae of Cauchy–Kubota type, valuation property and isoperimetric/Urysohn-like inequalities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Ambrosio, L., Fusco, N., Pallara. D.: Functions of Bounded Variation and Free Discontinuity Problems. Oxford Mathematical Monographs. Clarendon Press, Oxford (2000)

  2. Artstein-Avidan S., Klartag B., Milman V.D.: The Santaló point of a function, and a functional form of the Santaló inequality. Mathematika 51, 33–48 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ball, K.: PhD Thesis, University of Cambridge (1988)

  4. Ball, K.: Some remarks on the geometry of convex sets. In: Geometric Aspects of Functional Analysis (1986/1987). Lecture Notes in Mathematics, vol. 1317, pp. 223–231. Springer, Berlin (1988)

  5. Ball K.M., Böröczky K.: Stability of the Prékopa–Leindler inequality. Mathematika 56, 339–356 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Ball K.M., Böröczky K.: Stability of some versions of the Prékopa–Leindler inequality. Monatsh. Math. 163, 1–14 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bobkov, S.G.: A remark on the surface Brunn–Minkowski-type inequality. In: Geometric Aspects of Functional Analysis. Lecture Notes in Mathematics, vol. 1910, pp. 77–79. Springer, Berlin (2007)

  8. Bobkov, S.G., Ledoux, M.: From Brunn–Minkowski to sharp Sobolev inequalities. Ann. Mat. Pura Appl. (4) 187(3), 369–384 (2008)

    Google Scholar 

  9. Bucur, D., Fragalà. I.: Lower bounds for the Prékopa–Leindler deficit by some distances modulo translations (2012, Preprint)

  10. Borell C.: Convex measures on locally convex spaces. Ark. Math. 12, 239–252 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  11. Borell C.: Convex set functions in d-space. Period. Math. Hung. 6(2), 111–136 (1975)

    Article  MathSciNet  Google Scholar 

  12. Borell C.: Capacitary inequalities of the Brunn–Minkowski type. Math. Ann. 263(2), 179–184 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  13. Brascamp H.J., Lieb E.H.: On extensions of the Brunn–Minkowski and Prekopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation. J. Funct. Anal. 22(4), 366–389 (1976)

    Article  MATH  MathSciNet  Google Scholar 

  14. Burago, Yu.D., Zalgaller, V.A.: Geometric inequalities. Translated from the Russian by A. B. Sosinskii. Springer Series in Soviet Mathematics. Springer, Berlin (1988)

  15. Colesanti A.: Brunn Minkowski inequalities for variational functionals and related problems. Adv. Math. 194, 105–140 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Colesanti, A., Fragalà. I.: The area measure of log-concave functions and related inequalities (2011, Preprint). http://arxiv.org/abs/1112.2555

  17. Colesanti A., Salani P.: The Brunn–Minkowski inequality for p-capacity of convex bodies. Math. Ann. 327(3), 459–479 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  18. Das Gupta S.: Brunn–Minkowski inequality and its aftermath. J. Multivar. Anal. 10(3), 296–318 (1980)

    Article  MATH  Google Scholar 

  19. Dancs S., Uhrin B.: On a class of integral inequalities and their measure-theoretic consequences. J. Math. Anal. Appl. 74(2), 388–400 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  20. Hardy, G.H., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University Press, Cambridge (1959)

  21. Henstock, R., Macbeath, A.M.: On the measure of sum-sets. I. The theorems of Brunn, Minkowski, and Lusternik. In: Proceedings of London Mathematical Society (3), vol. 3, pp. 182–194 (1953)

  22. Klartag B., Milman V.D.: Geometry of log-concave functions and measures. Geom. Dedic. 112, 169–182 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  23. Leindler L.: On a certain converse of Hölder inequality II. Acta Sci. Math. (Szeged) 33, 217–223 (1972)

    MATH  MathSciNet  Google Scholar 

  24. Longinetti M., Salani P.: On the Hessian matrix and Minkowski addition of quasiconvex functions. J. Math. Pures Appl. 88, 276–292 (2007)

    MATH  MathSciNet  Google Scholar 

  25. Ludwig M.: Valuations on Sobolev spaces. Am. J. Math. 134, 824–842 (2012)

    Article  MathSciNet  Google Scholar 

  26. Maurey B.: Some deviation inequalities. Geom. Funct. Anal. 1(2), 188–197 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  27. Milman, V.D.; Rotem, L.: Mixed integrals and related inequalities (2012, Preprint). http://arxiv.org/abs/1210.4346

  28. Prékopa A.: Logarithmic concave measures with applications to stochastic programming. Acta Sci. Math. (Szeged) 32, 335–343 (1971)

    Google Scholar 

  29. Prékopa A.: On logarithmic concave measures and functions. Acta Sci. Math. (Szeged) 34, 335–343 (1973)

    MATH  MathSciNet  Google Scholar 

  30. Prékopa A.: New proof for the basic theorem of logconcave measures (Hungarian). Alkalmaz. Mat. Lapok 1, 385–389 (1975)

    MATH  MathSciNet  Google Scholar 

  31. Rockafellar T.: Convex Analysis. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  32. Rotem, L.: PhD Thesis, University of Tel Aviv (2011)

  33. Rotem, L.: On the mean width of log-concave functions (2011, Preprint)

  34. Salani P.: A Brunn–Minkowski inequality for the Monge–Ampère eigenvalue. Adv. Math. 194, 67–86 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  35. Schneider R.: Convex bodies: the Brunn–Minkowski theory. Cambridge University Press, Cambridge (1993)

    Book  MATH  Google Scholar 

  36. Schneider, R., Weil, W.: Stochastic and Integral Geometry. Probability and Its Applications, Springer, Berlin-Heidelberg (2008)

  37. Wright, M.: Hadwiger Integration of Definable Functions. PhD Thesis, University of Pennsylvania (2011)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Colesanti.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bobkov, S.G., Colesanti, A. & Fragalà, I. Quermassintegrals of quasi-concave functions and generalized Prékopa–Leindler inequalities. manuscripta math. 143, 131–169 (2014). https://doi.org/10.1007/s00229-013-0619-9

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-013-0619-9

Mathematics Subject Classifications (2010)

Navigation