Skip to main content
Log in

Howe correspondence and Springer correspondence for real reductive dual pairs

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We consider a real reductive dual pair (G′, G) of type I, with rank \({({\rm G}^{\prime}) \leq {\rm rank(G)}}\). Given a nilpotent coadjoint orbit \({\mathcal{O}^{\prime} \subseteq \mathfrak{g}^{{\prime}{*}}}\), let \({\mathcal{O}^{\prime}_\mathbb{C} \subseteq \mathfrak{g}^{{\prime}{*}}_\mathbb{C}}\) denote the complex orbit containing \({\mathcal{O}^{\prime}}\). Under some condition on the partition λ′ parametrizing \({\mathcal{O}^{\prime}}\), we prove that, if λ is the partition obtained from λ by adding a column on the very left, and \({\mathcal{O}}\) is the nilpotent coadjoint orbit parametrized by λ, then \({\mathcal{O}_\mathbb{C}= \tau (\tau^{\prime -1}(\mathcal{O}_\mathbb{C}^{\prime}))}\), where \({\tau, \tau^{\prime}}\) are the moment maps. Moreover, if \({chc(\hat\mu_{\mathcal{O}^{\prime}}) \neq 0}\), where chc is the infinitesimal version of the Cauchy-Harish-Chandra integral, then the Weyl group representation attached by Wallach to \({\mu_{\mathcal{O}^{\prime}}}\) with corresponds to \({\mathcal{O}_\mathbb{C}}\) via the Springer correspondence.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Aubert, A.-M., Kraśkiewicz, W., Przebinda, T.: Howe correspondence and Springer correspondence for real reductive dual pairs. Preprint (2012)

  2. Barbasch D., Vogan D.: The local structure of characters. J. Funct. Anal. 37, 27–55 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bernon F., Przebinda T.: Boundedness of the Cauchy Harish-Chandra integral. J. Lie Theory 11, 499–613 (2011)

    MathSciNet  Google Scholar 

  4. Bernon F., Przebinda T.: Normalization of the Cauchy Harish-Chandra integral. J. Lie Theory 11, 615–702 (2011)

    MathSciNet  Google Scholar 

  5. Bernon, F., Przebinda, T.: The Cauchy Harish-Chandra integral and the invariant eigendistributions, Inter. Math. Res. Not. (accepted)

  6. Borho W., Brylinsky J.L.: Differential operators on homogeneous spaces. III. Invent. Math. 80, 1–68 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bouaziz A.: Intégrales orbitales sur les algèbres de Lie réductives. Invent. Math. 115, 163–207 (1994)

    Article  MATH  MathSciNet  Google Scholar 

  8. Carter, R.W.: Finite groups of Lie type. Conjugacy classes and complex characters. Wiley Classics Library, Hoboken (1993)

  9. Collingwood, D., McGovern, W.: Nilpotent orbits in complex semisimple Lie algebras. Reinhold, Van Nostrand, New York (1993)

  10. Daszkiewicz A., Kraśkiewicz W., Przebinda T.: Nilpotent orbits and complex dual pairs. J. Algebra 190, 518–539 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  11. Geck, M., Pfeiffer, G.: Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras. Clarendon Press, Oxford (2000)

  12. Harish-Chandra: Representations of semisimple Lie groups III. Characters. Proc. Natl. Acad. Sci. 37, 366–369 (1951)

    Google Scholar 

  13. Harish-Chandra: The characters of semisimple Lie groups. Trans. Am. Math. Soc. 83, 98–163 (1956)

    Google Scholar 

  14. Harish-Chandra: Differential operators on a semisimple Lie algebra. Am. J. Math 79, 87–120 (1957)

    Google Scholar 

  15. Harish-Chandra, M.: Invariant eigendistributions on a semisimple Lie algebra. Publ. Math. I.H.E.S. 27, 5–54 (1965)

    Google Scholar 

  16. He, H.; Unipotent representations and quantum induction. Preprint (2007)

  17. Helgason, S.: Groups and geometric analysis, integral geometry, invariant differential operators, and spherical functions. Academic Press, San Diego (1984)

  18. Hotta R., Kashiwara M.: The invariant holonomic system on a semisimple Lie algebra. Invent. Math. 75, 327–358 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  19. Howe, R.: θ-series and invariant theory. Automorphic forms, representations and L-functions (Proc. Sympos. Pure Math., Oregon State Univ., Corvallis, Ore., 1977). Part 1. In: Proceedings of Symposia in Pure Mathematics, vol. XXXIII, pp. 275–285. Amer. Math. Soc., Providence (1979)

  20. Howe, R.: Wave front sets of representations of Lie groups. In: Automorphic forms, Representation Theory and Arithmetic, pp. 117–140, Tata Institute of Fundamental Research, Bombay (1981)

  21. Howe R.: Transcending classical invariant theory. J. Am. Math. Soc 2, 535–552 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  22. James, G.D.: Representation theory of the symmetric group. In: Lecture notes in mathematics, vol. 682. Springer, Berlin (1977)

  23. Kazhdan D., Lusztig G.: A topological approach to Springer’s representations. Adv. Math. 38, 222–228 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  24. Levasseur T., Stafford J.T.: Invariant differential operators and an homomorphism of Harish-Chandra. J. Am. Math. Soc. 8, 365–372 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  25. Levasseur T., Stafford J.T.: The kernel of an homomorphism of Harish-Chandra. Ann. Sci. Éc. Norm. Sup 4, 385–397 (1996)

    MathSciNet  Google Scholar 

  26. Lusztig G.: Irreducible representations of finite classical groups. Invent. Math. 43, 125–176 (1977)

    Article  MATH  MathSciNet  Google Scholar 

  27. Przebinda T.: Characters, dual pairs, and unitary representations. Duke Math. J. 69, 547–592 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  28. Przebinda T.: The duality correspondence of infinitesimal characters. Coll. Math. 70, 93–102 (1996)

    MATH  MathSciNet  Google Scholar 

  29. Przebinda T.: A Cauchy Harish-Chandra Integral, for a real reductive dual pair. Inven. Math. 141, 299–363 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  30. Przebinda, T.: A Capelli Harish-Chandra Homomorphism. Trans. Am. Math. Soc. 356, 1121–1154 (2004)

    Google Scholar 

  31. Przebinda T.: Local geometry of orbits for an ordinary classical Lie supergroup. Cent. Eur. J. Math. 4, 449–506 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  32. Ranga Rao R.: Orbital integrals in reductive groups. Ann. Math. 96, 505–510 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  33. Rossmann, W.: Invariant eigendistributions on a semisimple Lie algebra and homology classes on the conormal variety I: an integral formula; II: representations of Weyl groups, J. Fun. Anal. 96, 130–154, 155–192 (1991)

    Google Scholar 

  34. Rossmann W.: Picard-Lefschetz theory and characters of semisimple a Lie group. Invent. Math. 121, 579–611 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  35. Schmid, W.: On the characters of the discrete series. The Hermitian symmetric case. Invent. Math. 30, 47–144 (1975)

    Google Scholar 

  36. Shoji, T.: Green functions of reductive groups over a finite field, Proc. Symp. Pure Math. 47, 289–302 (1987)

    Google Scholar 

  37. Spaltenstein, N.: Classes unipotentes et sous-groupes de Borel. Lect. Not. Math. 946 (1982)

  38. Springer, T.A.: A construction of representations of Weyl groups, Invent. Math. 44, 279–293 (1978)

    Google Scholar 

  39. Varadarajan, V.S.: Harmonic analysis on real reductive groups. Lect. Not. Math. 576 (1977)

  40. Wallach, N.: Real reductive groups II. Academic Press, San Diego (1988)

  41. Wallach N.: Invariant differential operators on a reductive Lie algebra and Weyl group representations. J. Am. Math. Soc. 6, 779–816 (1993)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A.-M. Aubert.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aubert, AM., Kraśkiewicz, W. & Przebinda, T. Howe correspondence and Springer correspondence for real reductive dual pairs. manuscripta math. 143, 81–130 (2014). https://doi.org/10.1007/s00229-013-0617-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-013-0617-y

Mathematics Subject Classification (2000)

Navigation