Advertisement

Manuscripta Mathematica

, Volume 142, Issue 3–4, pp 491–512 | Cite as

Hochschild cohomology rings of tame Hecke algebras

  • Yunge XuEmail author
  • Tiwei Zhao
Article
  • 187 Downloads

Abstract

Let A be a tame Hecke algebra of type A. Based on the minimal projective bimodule resolution \({(\mathbb{P} , \delta)}\) of A constructed by Schroll and Snashall, we first give an explicit description of the so-called “comultiplicative structure” of the generators of each term P n in \({(\mathbb{P} , \delta)}\) , and then apply it to define a chain map \({\Delta: \mathbb{P} \rightarrow \mathbb{P} \otimes_A \mathbb{P}}\) and thus show that the cup product in the level of cochains for the tame Hecke algebra A is essentially juxtaposition of parallel paths up to sign. As a consequence, we determine the structure of the Hochschild cohomology ring of A under the cup product by giving an explicit presentation by generators and relations.

Mathematics Subject Classification (2000)

16E40 16G10 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Ardizzoni A, Menini C, Stefan D: Hochschild cohomology and “smoothness” in monoidal categories. J. Pure Appl. Algebra 208, 297–330 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Buchweitz RO, Green EL, Snashall N, Solberg Ø: Multiplicative structures for Koszul algebras. Quart. J. Math. 59(4), 441–454 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Benson DJ, Erdmann K: Hochschild cohomology of Hecke algebras. J. Algebra 336, 391–394 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Bustamante JC: The cohomology structure of string algebras. J. Pure Appl. Algebra 204, 616–626 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cibils C: Rigidity of truncated quiver algebras. Adv. Math. 79, 18–42 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Erdmann K, Nakano DK: Representation type of Hecke algebras of type A. Trans. Am. Math. Soc. 354(1), 275–285 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Erdmann K, Holm T: Twisted bimodules and Hochschild cohomology for self-injective algebras of class A n. Forum Math. 11, 177–201 (1998)MathSciNetGoogle Scholar
  8. 8.
    Erdmann K, Schroll S: On the Hochschild cohomology of tame Hecke algebras. Arch. Math. 94, 117–127 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Erdmann K, Snashall N: On Hochschild cohomology of preprojective algebras. II. J. Algebra 205, 413–434 (1998)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fan JM, Xu YG: On Hochschild cohomology ring of Fibonacci algebras. Frontiers Math. China 1(4), 526–537 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gerstenhaber M: On the deformation of rings and algebras. Ann. Math. 79, 59–103 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Gerstenhaber M: The cohomology structure of an associative ring. Ann. Math. 78(2), 267–288 (1963)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Green E.L., Hartman G., Marcos E.N., Solberg Ø.: Resolutions over Koszul algebras. Archiv der Mathematik 85(2), 118–127 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Green, E.L., Hartman, G., Macros, E.N., Solberg, Ø.: Hochschild chomology rings and triangular rings. Happel, D., Zhang Y.B. (eds.), Proceedings of 9th International Conference. Beijing Normal University Press, Beijing, 2, 192–200 (2002).Google Scholar
  15. 15.
    Happel D: Hochschild cohomology of finite dimensional algebras. Lecture Notes Math. 1404, 108–126 (1989)MathSciNetCrossRefGoogle Scholar
  16. 16.
    Hochschild G: On the cohomology groups of an associative algebra. Ann. Math. 46(1), 58–67 (1945)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Jost T: Morita equivalence for blocks of Hecke algebras of symmetric groups. J. Algebra 194, 201–223 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Linckelmann M: Finite generation of Hochschild cohomology of Hecke algebras of finite classical type in characteristic zero. Bull. London Math. Soc. 43(5), 871–885 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Membrillo-Hernández F.H.: Brauer tree algebras and derived equivalence. J. Pure Appl. Algebra 314(3), 231–258 (1991)Google Scholar
  20. 20.
    Rickard J: Derived equivalences as derived functors. J. London Math. Soc. 43, 37–48 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Skowroński A: Simply connected algebras and Hochschild cohomology. Proc. ICRA IV (Ottawa 1992). Can. Math. Soc. Proc. 14, 431–447 (1993)Google Scholar
  22. 22.
    Schroll S, Snashall N: Hochschild cohomology and support varieties for tame Hecke algebras. Quart. J. Math. 62, 1017–1029 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Snashall N, Solberg Ø: Support varieties and Hochschild cohomology rings. Proc. London Math. Soc. 88, 705–732 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Siegel SF, Witherspoon SJ: The Hochschild cohomology ring of a group algebra. Proc. London Math. Soc. 79(3), 131–157 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Weibel, C.: An introduction to homological algebra, Cambridge Studies in Advanced Mathematics. Vol. 38, Cambridge University Press, Cambridge (1994)Google Scholar
  26. 26.
    Witherspoon SJ: Products in Hochschild cohomology and Grothendieck rings of group crossed products. Adv. Math. 185, 135–158 (2004)MathSciNetCrossRefGoogle Scholar
  27. 27.
    Xu YG, Xiang HL: Hochschild cohomology rings of d-Koszul algebras. J. Pure Appl. Algebra 215, 1–12 (2011)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.School of Mathematics and Computer ScienceHubei UniversityWuhanP. R. China

Personalised recommendations