Manuscripta Mathematica

, Volume 142, Issue 3–4, pp 391–408 | Cite as

New Beauville surfaces and finite simple groups

  • Shelly Garion
  • Matteo PeneginiEmail author


In this paper we construct new Beauville surfaces with group either PSL(2, p e ), or belonging to some other families of finite simple groups of Lie type of low Lie rank, or an alternating group, or a symmetric group, proving a conjecture of Bauer, Catanese and Grunewald. The proofs rely on probabilistic group theoretical results of Liebeck and Shalev, on classical results of Macbeath and on recent results of Marion.

Mathematics Subject Classification (2000)

14J10 14J29 20D06 20H10 30F99 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Barth, W.P., Hulek, K., Peters, C.A.M., Van de Ven, A.: Compact complex surfaces. Second edition. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 4. Springer, Berlin (2004)Google Scholar
  2. 2.
    Bauer, I., Catanese, F., Grunewald, F.: Beauville surfaces without real structures. In: Geometric Methods in Algebra and Number Theory, Progress in Mathematics, vol. 235, pp. 1–42, Birkhäuser, Boston (2005)Google Scholar
  3. 3.
    Bauer I., Catanese F., Grunewald F.: Chebycheff and Belyi polynomials, dessins d’enfants, Beauville surfaces and group theory. Mediterr. J. Math. 3(2), 121–146 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Beauville, A.: Surfaces Algébriques Complex. Astérisque, vol. 54. Paris (1978)Google Scholar
  5. 5.
    Catanese F.: Fibred surfaces, varieties isogenous to a product and related moduli spaces. Am. J. Math. 122, 1–44 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Conder M.D.E.: Generators for alternating and symmetric groups. J. Lond. Math. Soc. 22, 75–86 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Conder M.D.E.: Hurwitz groups: a brief survey. Bull. Am. Math. Soc. 23, 359–370 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Dickson, L.E.: Linear Groups with an Exposition of the Galois Field Theory (Teubner 1901).Google Scholar
  9. 9.
    Everitt B.: Alternating quotients of Fuchsian groups. J. Algeb. 223, 457–476 (2000)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Fuertes Y., Jones G.: Beauville surfaces and finite groups. J. Algeb. 340, 13–27 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Garion, S.: On Beauville structures for PSL(2, q). Preprint availiable at arXiv:1003.2792Google Scholar
  12. 12.
    Garion S., Larsen M., Lubotzky A.: Beauville surfaces and finite simple groups. J. Reine Angew. Math. 666, 225–243 (2012)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Gorenstein D.: Finite groups. Chelsea, New York (1980)zbMATHGoogle Scholar
  14. 14.
    Liebeck M.W., Shalev A.: Fuchsian groups, coverings of Riemann surfaces, subgroup growth, random quotients and random walks. J. Algeb. 276, 552–601 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Liebeck M.W., Shalev A.: Fuchsian groups, finite simple groups and representation varieties. Invent. Math. 159(2), 317–367 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Macbeath, A.M.: Generators of the linear fractional groups. In: Number Theory (Proceedings of Symposia in Pure Mathematics, vol. XII, Houston 1967), pp. 14–32. AMS, Providence (1969)Google Scholar
  17. 17.
    Marion C.: Triangle groups and PSL2(q), J. Group Theory 12, 689–708 (2009)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Marion C.: Triangle generation of finite exceptional groups of low rank. J. Algeb. 332(1), 35–61 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Marion C.: Random and deterministic triangle generation of three-dimentional classical groups I. Preprint.Google Scholar
  20. 20.
    Marston M.D.E.: An update on Hurwitz groups. Group. Complex. Cryptol. 2(1), 35–49 (2010)zbMATHGoogle Scholar
  21. 21.
    Serrano, F.: Isotrivial fibred surfaces. Annali di Matematica. pura e applicata CLXXI, 63–81 (1996)Google Scholar
  22. 22.
    Suzuki M.: Group Theory I. Springer, Berlin (1982)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Max-Planck-Institute for MathematicsBonnGermany
  2. 2.Lehrstuhl Mathematik VIIIUniversität Bayreuth NWIIBayreuthGermany

Personalised recommendations