Advertisement

Manuscripta Mathematica

, Volume 142, Issue 3–4, pp 347–367 | Cite as

Endomorphismes pseudo-aléatoires dans les espaces projectifs I

  • Henry de ThélinEmail author
Article

Abstract

We study pseudo-random holomorphic endomorphisms of \({\mathbb{P}^{k}(\mathbb{C})}\). Under some assumptions, we construct a pseudo-random Green current and a pseudo-random Green measure and we prove that this measure has mixing properties.

Mathematics Subject Classification

32U40 32H50 

Résumé

Nous étudions des suites d’endomorphismes pseudo-aléatoires de \({\mathbb{P}^{k}(\mathbb{C})}\). Sous certaines hypothèses, nous construisons un courant de Green et une mesure de Green pseudo-aléatoires. Nous montrons que cette mesure de Green vérifie des propriétés de mélange.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Abramov, L.M.; Rohlin, V.A.: Entropy of a skew product of mappings with invariant measure. Vestnik Leningrad University 17 (1962), 5-13 = A.M.S. Transl. Series 2, 48 (1966), 255–265Google Scholar
  2. 2.
    Briend J.-Y., Duval J.: Exposants de Liapounoff et distribution des points périodiques d’un endomorphisme de \({\mathbb{CP}^{k}}\). Acta Math. 182, 143–157 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Briend J.-Y., Duval J.: Deux caractérisations de la mesure d’équilibre d’un endomorphisme de \({\mathbb{P}^{k}(\mathbb{C})}\). IHES Publ. Math. 93, 145–159 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    De Thélin H.: Sur les exposants de Lyapounov des applications méromorphes. Invent. Math. 172, 89–116 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    De Thélin, H.: Endomorphismes pseudo-aléatoires dans les espaces projectifs II. preprint, arXiv:1209.3597 (2012)Google Scholar
  6. 6.
    Dinh T.-C., Dupont C.: Dimension de la mesure d’équilibre d’applications méromorphes. J. Geom. Anal. 14, 613–627 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Dinh T.-C., Nguyen V.-A., Sibony N.: Exponential estimates for plurisubharmonic functions and stochastic dynamics. J. Differ. Geom. 84, 465–488 (2010)MathSciNetzbMATHGoogle Scholar
  8. 8.
    Dinh T.-C., Sibony N.: Distribution des valeurs de transformations méromorphes et applications. Comment. Math. Helv. 81, 221–258 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Dinh T.-C., Sibony N.: Pull-back of currents by holomorphic maps. Manuscripta Math. 123, 357–371 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Dinh T.-C., Sibony N.: Super-potentials of positive closed current, intersection theory and dynamics. Acta Math. 203, 1–82 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Fornæss J.E., Sibony N.: Random iterations of rational functions. Ergod. Theory Dyn. Syst. 11, 687–708 (1991)CrossRefzbMATHGoogle Scholar
  12. 12.
    Fornæss, J.E., Sibony, N.: Complex dynamics in higher dimensions. Complex potential theory (Montreal, PQ, 1993). NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 439, 131–186 (1994)Google Scholar
  13. 13.
    Fornæss J.E., Sibony N.: Complex dynamics in higher dimension I. Astérisque 222, 201–231 (1994)Google Scholar
  14. 14.
    Fornæss J.E., Weickert B.: Random iteration in \({\mathbb{P}^{k}}\). Ergod. Theory Dynam. Syst. 20, 1091–1109 (2000)CrossRefzbMATHGoogle Scholar
  15. 15.
    Ledrappier F., Walters P.: A relativised variational principle for continuous transformations. J. Lond. Math. Soc. 16, 568–576 (1977)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Université Paris 13, Sorbonne Paris Cité, LAGA, CNRS (UMR 7539)VilletaneuseFrance

Personalised recommendations