Manuscripta Mathematica

, Volume 142, Issue 1–2, pp 187–214 | Cite as

Hölder regularity for parabolic De Giorgi classes in metric measure spaces

  • Mathias MassonEmail author
  • Juhana Siljander


We give a proof for the Hölder continuity of functions in the parabolic De Giorgi classes in metric measure spaces. We assume the measure to be doubling, to support a weak (1, p)-Poincaré inequality and to satisfy the annular decay property.

Mathematics Subject Classification (1991)

Primary 35B65 Secondary 35K65 31E05 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Anders B., Jana B.: Nonlinear Potential Theory on Metric Spaces, vol. 17 of EMS Tracts in Mathematics. European Mathematics Society (EMS), Zurich (2011)Google Scholar
  2. 2.
    Anders B., Jana B., Nageswari S.: The Diriclet problem for p-harmonic functions on metric spaces. J. Reine Angew. Math. 556, 173–203 (2003)MathSciNetzbMATHGoogle Scholar
  3. 3.
    Buckley S.M.: Is the maximal function of a Lipschitz function continuous? Ann. Acad. Sci. Fenn. Math. 24(2), 519–528 (1999)MathSciNetGoogle Scholar
  4. 4.
    Jeff C.: Differentiability of Lipschitz functions on metric measure spaces. Geom. Funct. Anal. 9(3), 428–517 (1999)MathSciNetCrossRefGoogle Scholar
  5. 5.
    Chiarenza F., Serapinoi R.: Degenerate parabolic equations and Harnack inequality. Ann. Mat. Pura Appl. 137(4), 139–162 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Chiarenza F.M., Serapioni R.P.: A Harnack inequality for degenerate parabolic equations. Commun. Partial Diff. Equ. 9(8), 719–749 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Chiarenza F., Serapioni R.: A remark on a Harnack inequality for degenerate parabolic equations. Rend. Sem. Mat. Univ. Padova 73, 179–190 (1985)MathSciNetzbMATHGoogle Scholar
  8. 8.
    DiBenedetto E.: On the local behaviour of solutions of degenerate parabolic equations with measurable coefficients. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 13(3), 487–535 (1986)MathSciNetzbMATHGoogle Scholar
  9. 9.
    DiBenedetto E.: Harnack estimates in certain function classes. Atti Seminario Matematico e Fisico Univ. Modena 37, 173–182 (1988)MathSciNetGoogle Scholar
  10. 10.
    DiBenedetto E.: Degenerate Parabolic Equations. Universitext. Springer, New York (1993)zbMATHCrossRefGoogle Scholar
  11. 11.
    Franchi B., Hajlaz P., Koskela P.: Definitions of Sobolev classes in metric spaces. Ann. Inst. Fourier (Grenoble) 49, 1903–1924 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    Gianazza U., Vespri V.: Parabolic De Giorgi classes of order p and the Harnack inequality. Calc. Var. Partial Differ. Equ. 26(3), 379–399 (2006)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Giaquinta M.: Introduction to Regularity Theory for Nonlinear Elliptic Systems. Lectures in Mathematics ETH Zürich. Birkhäuser Verlag, Basel (1993)zbMATHGoogle Scholar
  14. 14.
    Giusti E.: Direct Methods in the Calulus of Variations. World Scientific Publishing, River Edge (2003)CrossRefGoogle Scholar
  15. 15.
    Hajlasz P., Koskela P.: Sobolev meets Poincaré. C. R. Acad. Sci. Paris 320(1), 1211–1215 (1995)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Heinonen J.: Lectures on Analysis on Metric Spaces. Universitext. Springer, New York (2001)zbMATHCrossRefGoogle Scholar
  17. 17.
    Heinonen J., Koskela P.: Quasiconformal maps in metric spaces with controlled geometry. Acta Math. 181, 1–61 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  18. 18.
    Keith S., Keith S., Keith S.: The Poincaré inequality is an open ended condition. Ann. Math.(2) 167(2), 575–599 (2008)zbMATHCrossRefGoogle Scholar
  19. 19.
    Kinnunen J., Shanmugalingam N.: Regularity of quasi-minimizers on metric spaces. Manuscr. Math. 105(3), 401–423 (2001)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Koskela P., Macmanus P.: Quasiconformal mappings and Sobolev spaces. Studia Math. 131, 1–17 (1998)MathSciNetzbMATHGoogle Scholar
  21. 21.
    Kuusi T., Laleoglu R., Siljander J., Urbano J.M.: Hölder continuity for trudinger’s equation in measure spaces. Calc. Var. Partial Differ. Equ. 45(1–2), 193–229 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  22. 22.
    Kuusi, T., Siljander, J., Urbano, J.M: Local hölder continuity for doubly nonlinear parabolic equations. Indiana Univ. Math. J. (To appear)Google Scholar
  23. 23.
    Ladyzhenskaja, O.A., Solonnikov, V.A., Ural’ceva, N.N.: Linear and Quasilinear Equations of Parabolic Type. Translation of Mathematical Monographs, vol. 23. American Mathematical Society, Providence (1968)Google Scholar
  24. 24.
    Shanmugalingam N.: Newtonian spaces: an extension of Sobolev spaces to metric measure spaces. Rev. Mat. Iberoamericana 16(2), 243–279 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  25. 25.
    Shanmugalingam N.: Harmonic functions on metric spaces. Illinois J. Math. 45, 1021–1050 (2001)MathSciNetzbMATHGoogle Scholar
  26. 26.
    Urbano J.M.: The Method of Intrinsic Scaling, vol. 1930 of Lecture Notes in Mathematics. A Systematic Approach to Regularity for Degenerate and Singular PDEs Springer, Berlin (2008)Google Scholar
  27. 27.
    Wieser W.: Parabolic Q-minima and minimal solutions to variational flows. Manuscr. Math. 59(1), 63–107 (1987)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Wu Z., Zhao J., Yin J., Li H.: Nonlinear Diffusion Equation. World Scientific, Singapore (2001)CrossRefGoogle Scholar
  29. 29.
    Zhou S.: On the local behaviour of parabolic Q-minima. J. Partial Differ. Equ. 6(3), 255–272 (1993)zbMATHGoogle Scholar
  30. 30.
    Zhou S.: Parabolic Q-minima and their application. J. Partial Differ. Equ. 7(4), 289–322 (1994)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Department of Mathematics and Systems AnalysisAalto UniversityAaltoFinland
  2. 2.Department of Mathematics and StatisticsUniversity of HelsinkiHelsinkiFinland

Personalised recommendations