Manuscripta Mathematica

, Volume 142, Issue 1–2, pp 127–156 | Cite as

Non-locally-free locus of O’Grady’s ten dimensional example

  • Yasunari NagaiEmail author


We give a completely explicit description of the fibers of the natural birational morphism from O’Grady’s ten dimensional singular moduli space of sheaves on a K3 surface to the corresponding Donaldson–Uhlenbeck compactification.

Mathematics Subject Classification

14D22 13A50 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Beauville, A.: Variétés Kähleriennes dont la première classe de Chern est nulle. J. Differ. Geom. 18(4), 755–782 (1983). (1984) (French)Google Scholar
  2. 2.
    Greuel, G.-M., Pfister, G., Schönemann, H.: SINGULAR–A computer algebra system for polynomial computations (2009).
  3. 3.
    Huybrechts, D., Lehn, M.: The geometry of moduli spaces of sheaves. Aspects of Mathematics, E31, Friedr. Vieweg Sohn, Braunschweig (1997)Google Scholar
  4. 4.
    King A.D.: Moduli of representations of finite-dimensional algebras. Q. J. Math. Oxford Ser. (2) 45(180), 515–530 (1994)zbMATHCrossRefGoogle Scholar
  5. 5.
    Kraft, H.: Klassische Invariantentheorie. Eine Einführung, Algebraische Transformationsgruppen und Invariantentheorie, DMV Sem., vol. 13. Birkhäuser, Basel, pp. 41–62 (1989) (German)Google Scholar
  6. 6.
    Lehn, M., Sorger, C.: La singularité de O’Grady. J. Algebraic Geom. 15(4), 753–770 (2006) (French, with English and French summaries)Google Scholar
  7. 7.
    Nakajima, H.: Lectures on Hilbert schemes of points on surfaces, University Lecture Series, vol. 18. American Mathematical Society, Providence, RI (1999)Google Scholar
  8. 8.
    O’Grady K.G.: Desingularized moduli spaces of sheaves on a K3. Reine Angew. Math. 512, 49–117 (1999). doi: 10.1515/crll.1999.056 MathSciNetzbMATHGoogle Scholar
  9. 9.
    Perego, A.: The 2-Factoriality of the O’Grady Moduli Spaces, preprint (2009). arXiv:0903.3211Google Scholar
  10. 10.
    Popov, V.L., Vinberg, E.B.: Invariant theory, Algebraic geometry. IV. In: Shafarevich, I.R. (ed.) Encyclopaedia of Mathematical Sciences, vol. 55. Springer, Berlin (1994) (English translation from Russian edition) (1989)Google Scholar
  11. 11.
    Rapagnetta A.: On the Beauville form of the known irreducible symplectic varieties. Math. Ann. 340(1), 77–95 (2008). doi: 10.1007/s00208-007-0139-6 MathSciNetCrossRefGoogle Scholar
  12. 12.
    Weyl H.: The Classical Groups. Their Invariants and Representations. Princeton University Press, Princeton (1939)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2012

Authors and Affiliations

  1. 1.Graduate School of Mathematical SciencesThe University of TokyoTokyoJapan

Personalised recommendations