Skip to main content
Log in

Iterated vanishing cycles

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

If A is a bounded, constructible complex of sheaves on a complex analytic space X, and \({f : X \rightarrow \mathbb{C}}\) and \({g : X \rightarrow \mathbb{C}}\) are complex analytic functions, then the iterated vanishing cycles φ g [−1](φ f [−1]A ) are important for a number of reasons. We give a formula for the stalk cohomology H*(φ g [−1]φ f [−1]A ) x in terms of relative polar curves, algebra, and Morse modules of A .

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Braden T.: On the reducibility of characteristic varieties. Proc. AMS 130, 2037–2043 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Briançon J., Maisonobe P., Merle M.: Localisation de systèmes différentiels, stratifications de Whitney et condition de Thom. Invent. Math. 117, 531–550 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Brylinski J.L., Dubson A., Kashiwara M.: Formule de l’indice pour les modules holonomes et obstruction d’Euler locale. C. R. Acad. Sci. Sér. A 293, 573–576 (1981)

    MathSciNet  MATH  Google Scholar 

  4. Caubel, C.: Sur la topologie d’une famille de pinceaux de germes d’hypersurfaces complexes. PhD thesis, Université Toulouse III (1998)

  5. Caubel C.: Variation of the milnor fibration in pencils of hypersurface singularities. Proc. Lond. Math. Soc. 83(2), 330–350 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dimca, A.: Sheaves in Topology. Universitext. Springer, Berlin (2004)

  7. Ginsburg V.: Characteristic varieties and vanishing cycles. Invent. Math. 84, 327–403 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Goresky, M., MacPherson, R.: Stratified Morse Theory, volume 40 of Proc. Symp. Pure Math. 517–533. AMS (1983)

  9. Guibert G., Loeser F., Merle M.: Iterated vanishing cycles, convolution, and a motivic analogue of a conjecture of Steenbrink. Duke Math. J. 132(3), 409–457 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  10. Hamm H., Lê D.T.: Un théorème de Zariski du type de Lefschetz. Ann. Sci. Éc. Norm. Sup. 6(series 4), 317–366 (1973)

    MATH  Google Scholar 

  11. Kashiwara, M., Schapira, P.: Sheaves on manifolds, volume 292 of Grund. math. Wissen. Springer, Berlin (1990)

  12. Kazhdan D., Lusztig G.: A topological approach to Springer’s representations. Adv. Math. 38, 222–228 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lê D.T.: Calcul du Nombre de Cycles Évanouissants d’une Hypersurface Complexe. Ann. Inst. Fourier, Grenoble 23, 261–270 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  14. Lê D.T.: Topological use of polar curves. Proc. Symp. Pure Math. 29, 507–512 (1975)

    Article  Google Scholar 

  15. Lê D.T.: Le concept de singularité isolée de fonction analytique. Adv. Stud. Pure Math. 8, 215–227 (1986)

    Google Scholar 

  16. Lê D.T., Perron B.: Sur la fibre de Milnor d’une singularité isolée en dimension complexe trois. C. R. Acad. Sci. Pairs Sér. A 289, 115–118 (1979)

    MATH  Google Scholar 

  17. Massey D.: Numerical invariants of perverse sheaves. Duke Math. J. 73(2), 307–370 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Massey D.: Lê Cycles and Hypersurface Singularities, volume 1615 of Lecture Notes in Math. Springer, Berlin (1995)

    Google Scholar 

  19. Massey D.: Hypercohomology of milnor fibres. Topology 35, 969–1003 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  20. Massey D.: A little microlocal morse theory. Math. Ann. 321, 275–294 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  21. Massey, D.: Numerical Control over Complex Analytic Singularities, volume 778 of Memoirs of the AMS. AMS (2003)

  22. Massey D.: Enriched relative polar curves and discriminants. Contemp. Math. 474, 107–144 (2008)

    Article  MathSciNet  Google Scholar 

  23. Sabbah C.: Quelques remarques sur la géométrie des espaces conormaux. Astérisque 130, 161–192 (1985)

    MathSciNet  Google Scholar 

  24. Sabbah C.: Proximité évanescente. Compos. Math. 62, 283–328 (1987)

    MathSciNet  MATH  Google Scholar 

  25. Saito M.: Mixed Hodge Modules. Publ. RIMS Kyoto Univ. 26, 221–333 (1990)

    Article  MATH  Google Scholar 

  26. Schürmann J.: Topology of Singular Spaces and Constructible Sheaves, volume 63 of Monografie Matematyczne. Birkhäuser, Basel (2004)

    Google Scholar 

  27. Teissier B.: Cycles évanescents, sections planes et conditions de Whitney. Astérisque 7–8, 285–362 (1973)

    MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David B. Massey.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Massey, D.B. Iterated vanishing cycles. manuscripta math. 141, 699–716 (2013). https://doi.org/10.1007/s00229-012-0588-4

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-012-0588-4

Mathematics Subject Classifications (2000)

Navigation