Skip to main content
Log in

Existence and asymptotic behaviour of solutions of the very fast diffusion equation

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

Let n ≥ 3, 0 < m ≤ (n − 2)/n, p > max(1, (1 − m)n/2), and \({0 \le u_0 \in L_{loc}^p(\mathbb{R}^n)}\) satisfy \({{\rm lim \, inf}_{R\to\infty}R^{-n+\frac{2}{1-m}} \int_{|x|\le R}u_0\,dx = \infty}\). We prove the existence of unique global classical solution of u t = Δu m, u > 0, in \({\mathbb{R}^n \times (0, \infty), u(x, 0) = u_0(x)}\) in \({\mathbb{R}^n}\). If in addition 0 < m < (n − 2)/n and u 0(x) ≈ A|x|q as |x| → ∞ for some constants A > 0, qn/p, we prove that there exist constants α, β, such that the function v(x, t) = t α u(t β x, t) converges uniformly on every compact subset of \({\mathbb{R}^n}\) to the self-similar solution ψ(x, 1) of the equation with ψ(x, 0) = A|x|q as t → ∞. Note that when m = (n − 2)/(n + 2), n ≥ 3, if \({g_{ij} = u^{\frac{4}{n+2}}\delta_{ij}}\) is a metric on \({\mathbb{R}^n}\) that evolves by the Yamabe flow ∂g ij /∂t = −Rg ij with u(x, 0) = u 0(x) in \({\mathbb{R}^n}\) where R is the scalar curvature, then u(x, t) is a global solution of the above fast diffusion equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Aronson D.G., Caffarelli L.A.: The initial trace of a solution of the porous medium equation. Trans. Am. Math. Soc. 280(1), 351–366 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Blanchet A., Bonforte M., Dolbeault J., Grillo G., Vazquez J.L.: Asymptotics of the fast diffusion equation via entropy estimates. Arch. Ration. Mech. Anal. 191, 347–385 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bonforte M., Vazquez J.L.: Positivity, local smoothing and Harnack inequalities for very fast diffusion equations. Adv. Math. 223, 529–578 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bénlian, P., Crandall, M.G.: Regularizing effects of homogenous evolution equations. In: Contributions to Analysis and Geometry (suppl. to Am. J. Math.), pp. 23–39. Johns Hopkins University Press, Baltimore (1981)

  5. Dahlberg B.E.J., Fabes E., Kenig C.E.: A Fatou thoerem for solutions of the porous medium equations. Proc. Am. Math. Soc. 91, 205–212 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dahlberg B.E.J., Kenig C.E.: Nonnegative solutions to the generalized porous medium equation. Rev. Mat. Iberoamericana 2, 267–305 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  7. Daskalopoulos, P., Kenig, C.E.: Degenerate Diffusion-Initial Value Problems and Local Regularity Theory, Tracts in Mathematics 1, European Mathematical Society, (2007)

  8. Daskalopoulos P., Del Pino M.: On Nonlinear parabolic equations of very fast diffusion. Arch. Ration. Mech. Anal. 137, 363–380 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  9. Daskalopoulos P., Sesum N.: On the extinction profile of solutions to fast diffusion. J. Reine Angew Math. 622, 95–119 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Daskalopoulos, P., Sesum, N.: The classification of locally conformally flat Yamabe solitons. http://arxiv.org/abs/1104.2242.

  11. Del Pino M., Sáez M.: On the extinction profile for solutions of \({u_t=\Delta u^{(N-2)/(N+2)}}\). Indiana Univ. Math. J. 50(1), 611–628 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  12. Herrero M.A., Pierre M.: The Cauchy problem for \({u_t=\Delta u^m}\) for 0 < m < 1. Trans. Am. Math. Soc. 291(1), 145–158 (1985)

    MathSciNet  MATH  Google Scholar 

  13. Hsu S.Y.: Large time behaviour of solutions of a singular diffusion equation in \({\mathbb{R}^{n}}\). Nonlinear Anal. TMA 62(2), 195–206 (2005)

    Article  MATH  Google Scholar 

  14. Hsu S.Y.: Singular limit and exact decay rate of a nonlinear elliptic equation. Nonlinear Anal. TMA 75(7), 3443–3455 (2012)

    Article  MATH  Google Scholar 

  15. Hui K.M.: On some Dirichlet and Cauchy problems for a singular diffusion equation. Differ. Integral Equ. 15(7), 769–804 (2002)

    MathSciNet  MATH  Google Scholar 

  16. Hui K.M.: Singular limit of solutions of the very fast diffusion equation. Nonlinear Anal. TMA 68, 1120–1147 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kato T.: Schrödinger operators with singular potentials. Israel J. Math. 13, 135–148 (1973)

    Article  Google Scholar 

  18. Ladyzenskaya, O.A., Solonnikov, V.A., Uraltceva, N.N.: Linear and quasilinear equations of parabolic type. Transl. Math. Mono. vol. 23, Am. Math. Soc., Providence (1968)

  19. Peletier, L.A.: The porous medium equation. In: Amann, H., Bazley, N., Kirchgassner, K. (eds.) Applications of Nonlinear Analysis in the Physical Sciences. Pitman, Boston (1981)

  20. Vazquez J.L.: Nonexistence of solutions for nonlinear heat equations of fast-diffusion type. J. Math. Pures Appl. 71, 503–526 (1992)

    MathSciNet  MATH  Google Scholar 

  21. Vazquez, J.L.: Smoothing and Decay Estimates for Nonlinear Diffusion Equations. Oxford Lecture Series in Mathematics and its Applications 33, Oxford University Press, Oxford (2006)

  22. Vazquez J.L.: The Porous Medium Equation—Mathematical Theory. Oxford Mathematical Monographs. Oxford University Press, Oxford (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-Yu Hsu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hsu, SY. Existence and asymptotic behaviour of solutions of the very fast diffusion equation. manuscripta math. 140, 441–460 (2013). https://doi.org/10.1007/s00229-012-0576-8

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-012-0576-8

Mathematics Subject Classification

Navigation