Skip to main content
Log in

Lipschitz regularity for constrained local minimizers of convex variational integrals with a wide range of anisotropy

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We establish interior gradient bounds for functions \({u \in W^1_{1, {\rm loc}} (\Omega)}\) which locally minimize the variational integral \({J [u, \Omega] = \int_\Omega h \left( |\nabla u| \right) dx}\) under the side condition \({u \ge \Psi}\) a.e. on Ω with obstacle \({\Psi}\) being locally Lipschitz. Here h denotes a rather general N-function allowing (p, q)-ellipticity with arbitrary exponents 1 < p ≤ q < ∞. Our arguments are based on ideas developed in Bildhauer et al. (Z Anal Anw 20:959–985, 2001) combined with techniques originating in Fuchs (2011).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Apushkinskaya, D., Bildhauer, M., Fuchs, M.: Interior gradient bounds for local minimizers of variational integrals under nonstandard growth conditions. Probl. Math. Anal. 43, 35–50 (2009); J. Math. Sci. 164(3), 345–363 (2010)

    Google Scholar 

  2. Bildhauer, M.: Convex Variational Problems: Linear, Nearly Linear And Anisotropic Growth Conditions. Lecture Notes in Mathematics, vol. 1818. Springer, Berlin (2003)

  3. Bildhauer M., Fuchs M.: Differentiability and higher integrability results for local minimizers of splitting-type variational integrals in 2D with applications to nonlinear Hencky-materials. Calc. Var. Partial Diff. Equ. 37, 167–186 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bildhauer M., Fuchs M., Mingione G.: Apriori gradient bounds and local C 1, α- estimates for (double) obstacle problems under nonstandard growth conditions. Z. Anal. Anw. 20, 959–985 (2001)

    MathSciNet  MATH  Google Scholar 

  5. Choe H.J., Lewis J.L.: On the obstacle problem for quasilinear elliptic equations of p–Laplace type. SIAM J. Math. Anal. 22(3), 623–638 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  6. Coscia A., Mingione G.: Hölder continuity of the gradient of p(x)-harmonic mappings. C. R. Acad. Sci. Paris t. 328(Série I), 363–368 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Cupini G., Guidorzi M., Mascolo E.: Regularity of minimizers of vectorial integrals with p-q growth. Nonlinear Anal. 54, 591–616 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  8. Esposito L., Leonetti F., Mingione G.: Sharp regularity for functionals with (p,q) growth. J. Diff. Equ. 204, 5–55 (2004)

    MathSciNet  MATH  Google Scholar 

  9. Friedman, A.: Variational Principles and Free-Boundary Problems. A Wiley-Interscience Publication. Pure and Applied Mathematics. John Wiley & Sons, New York (1982)

  10. Fuchs M.: Hölder continuity of the gradient for degenerate variational inequalities. Nonlinear Anal. TMA 15(1), 85–100 (1990)

    Article  MATH  Google Scholar 

  11. Fuchs M.: Topics in the Calculus of Variations. Vieweg, Wiesbaden (1994)

    Book  MATH  Google Scholar 

  12. Fuchs M.: Local Lipschitz regularity of vector valued local minimizers of variational integrals with densities depending on the modulus of the gradient. Math. Nachr. 204(2–3), 266–272 (2011)

    Article  Google Scholar 

  13. Fuchs M., Mingione G.: Full C 1, α–regularity for free and constrained local minimizers of variational integrals with nearly linear growth. Manus. Math. 102, 227–250 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Fuchs M., Osmolovski V.: Variational integrals on Orlicz–Sobolev spaces. Z. Anal. Anw. 17, 393–415 (1998)

    MathSciNet  MATH  Google Scholar 

  15. Fuchs M., Seregin G.: A regularity theory for variational integrals with L log L–growth. Calc. Var. Partial Diff. Equ. 6, 171–187 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  16. Fuchs M., Seregin G.: Variational models for fluids of Prandtl–Eyring type and plastic materials with logarithmic hardening. Math. Meth. Appl. Sci. 22, 317–351 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  17. Kinderlehrer D., Stampacchia G.: An Introduction to Variational Inequalities and Their Applications. Academic Press, New York (1980)

    MATH  Google Scholar 

  18. Lieberman G.: Regularity of solutions to some degenerate double obstacle problems. Indiana Univ. Math. J. 40(3), 1009–1028 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  19. Lindquist P.: Regularity for the gradient of the solution to a nonlinear obstacle problem with degenerate ellipticity. Nonlinear Anal. 12, 1245–1255 (1988)

    Article  MathSciNet  Google Scholar 

  20. Marcellini P.: Regularity of minimizers of integrals of the calculus of variations with non standard growth conditions. Arch. Rat. Mech. Anal. 105, 267–284 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  21. Marcellini P.: Regularity and existence of solutions of elliptic equations with (p, q)–growth conditions. J. Diff. Equ. 90, 1–30 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Marcellini P.: Regularity for elliptic equations with general growth conditions. J. Diff. Equ. 105, 296–333 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  23. Marcellini P.: Everywhere regularity for a class of elliptic systems without growth conditions. Ann. Scuola Norm. Sup. Pisa 23, 1–25 (1996)

    MathSciNet  MATH  Google Scholar 

  24. Marcellini P., Papi G.: Nonlinear elliptic systems with general growth. J. Diff. Equ. 221, 412–443 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Michael J., Ziemer W.: Interior regularity for solutions to obstacle problems. Nonlinear Anal. 10, 1427–1448 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  26. Mingione G., Siepe F.: Full C 1, α regularity for minimizers of integral functionals with L log L growth. Z. Anal. Anw. 18, 1083–1100 (1999)

    MathSciNet  MATH  Google Scholar 

  27. Mu J., Ziemer W.P.: Smooth regularity of solutions of double obstacle problems involving degenerate elliptic equations. Comm. P.D.E. 16(4–5), 821–843 (1991)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Bildhauer.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bildhauer, M., Fuchs, M. Lipschitz regularity for constrained local minimizers of convex variational integrals with a wide range of anisotropy. manuscripta math. 141, 63–83 (2013). https://doi.org/10.1007/s00229-012-0560-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-012-0560-3

Mathematics Subject Classification

Navigation