Skip to main content
Log in

BMO and uniform estimates for multi-well problems

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

We establish optimal local regularity results for vector-valued extremals and minimizers of variational integrals whose integrand is the squared distance function to a compact set K in matrix space \({{{\mathbb M}^{N \times n}}}\). The optimality is illustrated by explicit examples showing that, in the nonconvex case, minimizers need not be locally Lipschitz. This is in contrast to the case when the set K is suitably convex, where we show that extremals are locally Lipschitz continuous. The results rely on the special structure of the integrand and elementary Cordes–Nirenberg type estimates for elliptic systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acerbi E., Fusco N.: Local regularity for minimizers of quasiconvex integrals. Ann. Sc. Norm. Sup. Pisa Cl. Sci. IV. Ser. 16, 603–636 (1989)

    MathSciNet  MATH  Google Scholar 

  2. Asplund E.: Fréchet differentiability of convex functions. Acta Math. 121, 31–47 (1968)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ball M.J., James R.D.: Fine phase mixtures as minimizers of energy. Arch. Ration. Mech. Anal. 100(1), 13–52 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ball M.J., James D.R.: Proposed experimental tests of a theory of fine microstructure and the two-well problem. Philos. Trans. R. Soc. Lond. A 338, 389–450 (1992)

    Article  MATH  Google Scholar 

  5. Ball M.J., Kirchheim B., Kristensen J.: Regularity of quasiconvex envelopes. Calc. Var. Partial Differ. Equ. 11(4), 333–359 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  6. Campanato S.: Equazioni ellittiche del \({{\rm II}^\circ}\) ordine espazi \({{\mathcal{L}}^{(2,\lambda)}}\). Ann. Mat. Pura Appl. 69(4), 321–381 (1965)

    Article  MathSciNet  MATH  Google Scholar 

  7. Carozza, M., Passarelli di Napoli, A., Schmidt, T., Verde, A.: Local and asymptotic regularity results for quasiconvex and quasimonotone problems. Quart. J. Math. (2012), to appear

  8. Chipot M., Evans C.L.: Linearisation at infinity and Lipschitz estimates for certain problems in the calculus of variations. Proc. R. Soc. Edinburgh Sect. A 102(3–4), 291–303 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Chipot M., Kinderlehrer D.: Equilibrium configurations of crystals. Arch. Ration. Mech. Anal. 103(3), 237–277 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  10. Dacorogna B.: Direct Methods in the Calculus of Variations, 2nd edn., vol. 78 of Applied Mathematical Sciences. Springer, New York (2008)

    Google Scholar 

  11. de Leeuw K., Mirkil H.: Majorations dans L des opérateurs différentiels à coefficients constants. C. R. Acad. Sci. Paris 254, 2286–2288 (1962)

    MathSciNet  MATH  Google Scholar 

  12. Dolzmann G., Kirchheim B., Kristensen J.: Conditions for equality of hulls in the calculus of variations. Arch. Ration. Mech. Anal. 154(2), 93–100 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dolzmann G., Kristensen J.: Higher integrability of minimizing Young measures. Calc. Var. Partial Differ. Equ. 22(3), 283–301 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  14. Ekeland, I., Témam, R. : Convex Analysis and Variational Problems, English edn., vol. 28 of Classics in Applied Mathematics. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1999), translated from the French

  15. Evans C.L., Gariepy F.R.: Measure Theory and Fine Properties of Functions. Studies in Advanced Mathematics. CRC Press, Boca Raton (1992)

    Google Scholar 

  16. Fonseca, I., Fusco, N.: Regularity results for anisotropic image segmentation models. Ann. Sc. Norm. Sup. Pisa Cl. Sci. 24(3), 463–499 (1997)

    Google Scholar 

  17. Fuchs M.: Differentiability properties of minima of nonsmooth variational integrals. Ricerche Mat. 46(1), 23–29 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Iwaniec T.: The best constant in a BMO-inequality for the Beurling–Ahlfors transform. Michigan Math. J. 33(3), 387–394 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  19. Iwaniec, T. : p-Harmonic tensors and quasiregular mappings. Ann. Math. 136(3), 589–624 (1992)

    Google Scholar 

  20. Kohn V.R.: The relaxation of a double-well energy. Contin. Mech. Thermodyn. 3(3), 193–236 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  21. Kristensen J., Mingione G.: The singular set of minima of integral functionals. Arch. Ration. Mech. Anal. 180(3), 331–398 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kristensen J., Mingione G.: Boundary regularity in variational problems. Arch. Ration. Mech. Anal. 198(2), 369–455 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  23. Malý, J., Ziemer, W.P.: Fine Regularity of Solutions of Elliptic Partial Differential Equations, vol. 51 of Mathematical Surveys and Monographs. American Mathematical Society, Providence (1997)

  24. Mingione G.: Regularity of minima: an invitation to the dark side of the calculus of variations. Appl. Math. 51(4), 355–426 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Müller, S.: Variational models for microstructure and phase transitions. In: Calculus of Variations and Geometric Evolution Problems (Cetraro, 1996), vol. 1713 of Lecture Notes in Math., pp. 85–210. Springer, Berlin (1999)

  26. Rockafellar, R. T.: Convex Analysis. Princeton Landmarks in Mathematics. Princeton University Press, Princeton (1997). Reprint of the 1970 original, Princeton Paperbacks

  27. Scheven, C., Schmidt, T.: Asymptotically regular problems. II. Partial Lipschitz continuity and a singular set of positive measure. Ann. Sc. Norm. Super. Pisa Cl. Sci. 8(3), 469–507 (2009)

    Google Scholar 

  28. Scheven C., Schmidt T.: Asymptotically regular problems. I. Higher integrability. J. Differ. Equ. 248(4), 745–791 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Seregin G.A.: On the regularity of solutions of variational problems in the theory of phase transitions in an elastic body. Algebra i Analiz 7(6), 153–187 (1995)

    MathSciNet  MATH  Google Scholar 

  30. Seregin G.A.: A variational problem on the phase equilibrium of an elastic body. Algebra i Analiz 10(3), 92–132 (1998)

    MathSciNet  Google Scholar 

  31. Šilhavý, M.: Rank 1 convex hulls of isotropic functions in dimension 2 by 2. In: Proceedings of Partial Differential Equations and Applications (Olomouc, 1999), vol. 126, pp. 521–529 (2001)

  32. Šverák V., Yan X.: Non-Lipschitz minimizers of smooth uniformly convex functionals. Proc. Natl Acad. Sci. USA 99(24), 15269–15276 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  33. Zhang K.: On various semiconvex relaxations of the squared-distance function. Proc. R. Soc. Edinburgh Sect. A 129(6), 1309–1323 (1999)

    Article  MATH  Google Scholar 

  34. Zhang K.: A two-well structure and intrinsic mountain pass points. Calc. Var. Partial Differ. Equ. 13(2), 231–264 (2001)

    Article  MATH  Google Scholar 

  35. Zhang K.: An elementary derivation of the generalized Kohn-Strang relaxation formulae. J. Convex Anal. 9(1), 269–285 (2002)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Kristensen.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dolzmann, G., Kristensen, J. & Zhang, K. BMO and uniform estimates for multi-well problems. manuscripta math. 140, 83–114 (2013). https://doi.org/10.1007/s00229-012-0531-8

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-012-0531-8

Mathematics Subject Classification (1991)

Navigation