Skip to main content
Log in

On the stationary Navier–Stokes flows around a rotating body

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

Consider the stationary motion of an incompressible Navier–Stokes fluid around a rotating body \( \mathcal{K} = \mathbb{R}^3 \, \backslash \, {\Omega}\) which is also moving in the direction of the axis of rotation. We assume that the translational and angular velocities U, ω are constant and the external force is given by f = div F. Then the motion is described by a variant of the stationary Navier–Stokes equations on the exterior domain Ω for the unknown velocity u and pressure p, with U, ω, F being the data. We first prove the existence of at least one solution (u, p) satisfying \({\nabla u, p \in L_{3/2, \infty} (\Omega)}\) and \({u \in L_3, \infty (\Omega)}\) under the smallness condition on \({|U| + |\omega| + ||F||_{L_{3/2, \infty} (\Omega)}}\) . Then the uniqueness is shown for solutions (u, p) satisfying \({\nabla u, p \in L_{3/2, \infty} (\Omega) \cap L_{q, r} (\Omega)}\) and \({u \in L_{3, \infty} (\Omega) \cap L_{q*, r} (\Omega)}\) provided that 3/2 <  q <  3 and \({{F \in L_{3/2, \infty} (\Omega) \cap L_{q, r} (\Omega)}}\) . Here L q,r (Ω) denotes the well-known Lorentz space and q* =  3q /(3 − q) is the Sobolev exponent to q.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bergh J., Löfström J.: Interpolation Spaces. Springer, Berlin (1976)

    Book  MATH  Google Scholar 

  2. Bogovskiĭ, M.E.: Solution of the first boundary value problem for an equation of continuity of an incompressible medium. Dokl. Akad. Nauk SSSR 248, 1037–1040 (1979) (Russian); English Transl.: Soviet Math Dokl. 20, 1094–1098 (1979)

  3. Borchers W.: Zur Stabilität und Faktorisierungsmethode für die Navier–Stokes Gleichungen inkompressibler viskoser Flüssigkeiten. University of Paderborn, Habilitationsschrift (1992)

    Google Scholar 

  4. Borchers W., Miyakawa T.: On stability of exterior stationary Navier–Stokes flows. Acta Math. 174, 311–382 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cattabriga L.: Su un problema al contorno relativo al sistema di equazioni di Stokes. Rend. Sem. Mat. Univ. Padova 31, 308–340 (1961)

    MathSciNet  MATH  Google Scholar 

  6. Chemin J.-Y.: Perfect Incompressible Fluids. Clarendon, Oxford (1998)

    MATH  Google Scholar 

  7. Farwig R.: An L q-analysis of vicous fluid flow past a rotating obstacle. Tohoku Math. J. 58, 129–147 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  8. Farwig R., Hishida T.: Stationary Navier–Stokes flow around a rotating obstacle. Funkcialaj Ekvacioj 50, 371–403 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  9. Farwig R., Hishida T., Müller D.: L q-theory of a singular “winding” integral operator arising from fluid dynamics. Pac. J. Math. 215, 297–312 (2004)

    Article  MATH  Google Scholar 

  10. Galdi G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. 1, Linearized Steady Problems. Springer, Berlin (1994)

    Book  MATH  Google Scholar 

  11. Galdi G.P.: An Introduction to the Mathematical Theory of the Navier–Stokes Equations, vol. 2, Nonlinear Steady Problems. Springer, Berlin (1994)

    Book  Google Scholar 

  12. Galdi G.P.: On the motion of a rigid body in a vicous liquid: a mathematical analysis with applications. Handbook of Mathematical Fluid Dynamics, vol. I,. pp.–791. North-Holland, Amsterdam (2002)

    Google Scholar 

  13. Galdi G.P.: Steady flow of a Navier–Stokes fluid around a rotating obstacle. J. Elast. 71, 1–31 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  14. Galdi G.P., Silvestre A.L.: Strong solutions to the Navier–Stokes equations around a rotating obstacle. Arch. Ration. Mech. Anal. 176, 331–350 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  15. Galdi G.P., Silvestre A.L.: The steady motion of a Navier–Stokes liquid around a rigid body. Arch. Ration. Mech. Anal. 184, 371–400 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  16. Galdi G.P., Simader C.G.: New estimates for the steady-state Stokes problem in exterior domains with application to the Navier–Stokes problem. Differ. Integral Equ. 7, 847–861 (1994)

    MathSciNet  MATH  Google Scholar 

  17. Geissert M., Heck H., Hieber M.: L p-theory of the Navier–Stokes flow in the exterior of a moving or rotating obstacle. J. Reine Angew. Math. 596, 45–62 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Hishida T.: An existence theorem for the Navier–Stokes flow in the exterior of a rotating obstacle. Arch. Ration. Mech. Anal. 150, 307–348 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  19. Hishida T.: L q estimates of weak solutions to the stationary Stokes equations around a rotating body. J. Math. Soc. Jpn. 58, 743–767 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hishida T., Shibata Y.: L q L q estimate of the Stokes operator and Navier–Stokes flows in the exterior of a rotating obstacle. Arch. Ration. Mech. Anal. 193, 239–421 (2009)

    Article  MathSciNet  Google Scholar 

  21. Kim H., Kozono H.: A removable isolated singularity theorem for the stationary Navier–Stokes equations. J. Differ. Equ. 220, 68–84 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kim, H., Kozono, H.: On the stationary Navier–Stokes equations in exterior domains. Preprint

  23. Kozono H., Sohr H.: On a new class of generalized solutions for the Stokes equations in exterior domains. Ann. Scuola Norm. Sup. Pisa 19, 155–181 (1992)

    MathSciNet  MATH  Google Scholar 

  24. Kozono H., Yamazaki M.: Exterior problem for the stationary Navier–Stokes equations in the Lorentz space. Math. Ann. 310, 279–305 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  25. Kozono H., Yamazaki M.: On larger class of the stable solutions to the Navier–Stokes equations in exterior domains. Math. Z. 228, 751–785 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Kozono H., Yamazaki M.: Uniqueness criterion of weak solutions to the stationary Navier–Stokes equations in exterior domains. Nonlinear Anal. 38, 959–970 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kračmar, S., Nečasová, Š., Penel, P.: L q approach of weak solutions of Ossen flow around a rotating body. Parabolic and Navier–Stokes equations. Part 1, Banach Center Publ., 81, 259–276 (2008)

  28. Leray J.: ’Etude de diverses équations intégrales non linéaires et de quelques problémes que pose l’Hydrodynamique. J. Math. Pures Appl. 9, 1–82 (1933)

    Google Scholar 

  29. Shibata Y., Yamazaki M.: Uniform estimates in the velocity at infinity for stationary solutions to the Navier–Stokes extrior problem. Jpn. J. Math. (N.S.) 31, 225–279 (2005)

    MathSciNet  MATH  Google Scholar 

  30. Silvestre A.L.: On the existence of steady flows of a Navier–Stokes liquid around a moving rigid body. Math. Methods Appl. Sci. 27, 1399–1409 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  31. Sohr H.: The Navier–Stokes Equations An Elementary Functional Analytic Approach. Birkhäuser, Boston (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hyunseok Kim.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heck, H., Kim, H. & Kozono, H. On the stationary Navier–Stokes flows around a rotating body. manuscripta math. 138, 315–345 (2012). https://doi.org/10.1007/s00229-011-0494-1

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-011-0494-1

Mathematics Subject Classification (2000)

Navigation