Skip to main content
Log in

Index-modules and applications

  • Published:
Manuscripta Mathematica Aims and scope Submit manuscript

Abstract

Let K be a commutative field, \({A\subseteq K}\) be a Dedekind ring and V be a K-vector space. For any pair of A-lattices R ≠ 0 and S of V, we define an A-submodule \({\left[R : S\right]^{\prime}_{A}}\) of K, their A-index-module. Once the basic properties of these modules are stated, we show that this notion can be used to recover more usual ones: the group-index, the relative invariant, the Fitting ideal of R/S when \({S\subseteq R}\), and the generalized index of Sinnott. As an example, we consider the following situation. Let F/k be a finite abelian extension of global function fields, with Galois group G, and degree g. Let ∞ be a place of k which splits completely in F/k. Let \({{\mathcal O}_{F}}\) be the ring of functions of F, which are regular outside the places of F sitting over ∞. Then one may use Stark units to define a subgroup \({\mathcal E_F}\) of \({{\mathcal O}_{F}^{\times}}\), the group of units of \({\mathcal O_F}\). We use the notion of index-module to prove that for every nontrivial irreducible rational character ψ of G, the ψ-part of \({\mathbb Z\left[g^{-1}\right]\otimes_\mathbb Z\left(\mathcal O_F^\times/\mathcal E_F\right)}\) and the ψ-part of \({\mathbb Z\left[g^{-1}\right]\otimes_\mathbb ZCl(\mathcal O_F)}\) have the same order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Belliard J.-R., Nguyen-Quang-Do T.: On modified circular units and annihilation of real classes. Nagoya Math. J. 177, 77–115 (2005)

    MathSciNet  MATH  Google Scholar 

  2. Bourbaki, N.: Algèbre commutative, chapitre 7, Diviseurs, Hermann (1965)

  3. Hayes D.R.: Stickelberger elements in function fields. Compositio Mathematica 55, 209–239 (1985)

    MathSciNet  MATH  Google Scholar 

  4. Oukhaba, H.: Groups of elliptic units in global function fields. In: David Goss, David R. Hayes, and Michael I. Rosen, (eds.)The Arithmetic of function fields, pp. 87–102, Berlin, New York, Walter de Gruyter (1992)

  5. Oukhaba H.: Unités elliptiques, indice et \({{\mathbb Z}_{p}}\)-extensions. Annales mathématiques Blaise Pascal 16, 165–188 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Popescu C.D.: Gras-type conjectures for function fields. Compositio Mathematica 118, 263–290 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  7. Sinnott W.: On the stickelberger ideal and the circular units of an abelian field. Inventiones mathematicae 62, 181–234 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  8. Tate J.: Les conjectures de Stark sur les fonctions L d’Artin en s = 0., Progress in Mathematics, vol. 47. Birkhäuser, Boston (1984)

    Google Scholar 

  9. Yin L.: Index-class number formulas over global function fields. Compositio Mathematica 109, 49–66 (1997)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stéphane Viguié.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Viguié, S. Index-modules and applications. manuscripta math. 136, 445–460 (2011). https://doi.org/10.1007/s00229-011-0452-y

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00229-011-0452-y

Keywords

Navigation